On Fully Decoupled, Convergent Schemes for Diffuse Interface Models for Two-Phase Flow with General Mass Densities

On Fully Decoupled, Convergent Schemes for Diffuse Interface Models for Two-Phase Flow with General Mass Densities

Year:    2016

Communications in Computational Physics, Vol. 19 (2016), Iss. 5 : pp. 1473–1502

Abstract

In the first part, we study the convergence of discrete solutions to splitting schemes for two-phase flow with different mass densities suggested in [Guillen-Gonzalez, Tierra, J. Comput. Math. (6)2014]. They have been formulated for the diffuse interface model in [Abels, Garcke, Grün, M3AS, 2012, DOI: 10.1142/S0218202511500138] which is consistent with thermodynamics. Our technique covers various discretization methods for phase-field energies, ranging from convex-concave splitting to difference quotient approaches for the double-well potential. In the second part of the paper, numerical experiments are presented in two space dimensions to identify discretizations of Cahn-Hilliard energies which are φ-stable and which do not reduce the acceleration of falling droplets. Finally, 3d simulations in axial symmetric geometries are shown to underline even more the full practicality of the approach.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.scpde14.39s

Communications in Computational Physics, Vol. 19 (2016), Iss. 5 : pp. 1473–1502

Published online:    2016-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    30

Keywords:   

  1. Unconditionally energy stable numerical schemes for phase-field vesicle membrane model

    Guillén-González, F. | Tierra, G.

    Journal of Computational Physics, Vol. 354 (2018), Iss. P.67

    https://doi.org/10.1016/j.jcp.2017.10.060 [Citations: 28]
  2. Comparison of energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model

    Bonart, Henning | Kahle, Christian | Repke, Jens-Uwe

    Journal of Computational Physics, Vol. 399 (2019), Iss. P.108959

    https://doi.org/10.1016/j.jcp.2019.108959 [Citations: 14]
  3. Numerical approximation of a non-smooth phase-field model for multicomponent incompressible flow

    Baňas, L’ubomír | Nürnberg, Robert

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 51 (2017), Iss. 3 P.1089

    https://doi.org/10.1051/m2an/2016048 [Citations: 8]
  4. Energy Transfers in Atmosphere and Ocean

    Diffuse Interface Approaches in Atmosphere and Ocean—Modeling and Numerical Implementation

    Garcke, Harald | Hinze, Michael | Kahle, Christian

    2019

    https://doi.org/10.1007/978-3-030-05704-6_9 [Citations: 0]
  5. Optimal Control of Droplets on a Solid Surface Using Distributed Contact Angles

    Bonart, Henning | Kahle, Christian | Repke, Jens-Uwe

    Langmuir, Vol. 36 (2020), Iss. 30 P.8894

    https://doi.org/10.1021/acs.langmuir.0c01242 [Citations: 3]
  6. Property-preserving numerical approximation of a Cahn–Hilliard–Navier–Stokes model with variable density and degenerate mobility

    Acosta-Soba, Daniel | Guillén-González, Francisco | Rodríguez-Galván, J. Rafael | Wang, Jin

    Applied Numerical Mathematics, Vol. 209 (2025), Iss. P.68

    https://doi.org/10.1016/j.apnum.2024.11.005 [Citations: 0]
  7. An adaptive isogeometric analysis approach to elasto‐capillary fluid‐solid interaction

    van Brummelen, E. H. | Demont, T. H. B. | van Zwieten, G. J.

    International Journal for Numerical Methods in Engineering, Vol. 122 (2021), Iss. 19 P.5331

    https://doi.org/10.1002/nme.6388 [Citations: 12]
  8. A convergent stochastic scalar auxiliary variable method

    Metzger, Stefan

    IMA Journal of Numerical Analysis, Vol. (2024), Iss.

    https://doi.org/10.1093/imanum/drae065 [Citations: 0]
  9. Unconditional stability and optimal error estimates of first order semi-implicit stabilized finite element method for two phase magnetohydrodynamic diffuse interface model

    Chen, Chuanjun | Zhang, Tong

    Applied Mathematics and Computation, Vol. 429 (2022), Iss. P.127238

    https://doi.org/10.1016/j.amc.2022.127238 [Citations: 3]
  10. Stability of gravity-driven liquid films overflowing microstructures with sharp corners

    Bonart, Henning | Rajes, Sangitha | Jung, Johannes | Repke, Jens-Uwe

    Physical Review Fluids, Vol. 5 (2020), Iss. 9

    https://doi.org/10.1103/PhysRevFluids.5.094001 [Citations: 3]
  11. Optimal control of time-discrete two-phase flow driven by a diffuse-interface model

    Garcke, Harald | Hinze, Michael | Kahle, Christian

    ESAIM: Control, Optimisation and Calculus of Variations, Vol. 25 (2019), Iss. P.13

    https://doi.org/10.1051/cocv/2018006 [Citations: 7]
  12. On stable, dissipation reducing splitting schemes for two-phase flow of electrolyte solutions

    Metzger, Stefan

    Numerical Algorithms, Vol. 80 (2019), Iss. 4 P.1361

    https://doi.org/10.1007/s11075-018-0530-2 [Citations: 7]
  13. Global regularity and asymptotic stabilization for the incompressible Navier–Stokes-Cahn–Hilliard model with unmatched densities

    Abels, Helmut | Garcke, Harald | Giorgini, Andrea

    Mathematische Annalen, Vol. 389 (2024), Iss. 2 P.1267

    https://doi.org/10.1007/s00208-023-02670-2 [Citations: 6]
  14. An Efficient and Convergent Finite Element Scheme for Cahn--Hilliard Equations with Dynamic Boundary Conditions

    Metzger, Stefan

    SIAM Journal on Numerical Analysis, Vol. 59 (2021), Iss. 1 P.219

    https://doi.org/10.1137/19M1280740 [Citations: 8]
  15. On the Problem of Inertia in Classical Mechanics

    He, Boshan

    IOP Conference Series: Materials Science and Engineering, Vol. 740 (2020), Iss. 1 P.012115

    https://doi.org/10.1088/1757-899X/740/1/012115 [Citations: 0]
  16. Numerical investigation of the sharp-interface limit of the Navier–Stokes–Cahn–Hilliard equations

    Demont, T.H.B. | Stoter, S.K.F. | van Brummelen, E.H.

    Journal of Fluid Mechanics, Vol. 970 (2023), Iss.

    https://doi.org/10.1017/jfm.2023.611 [Citations: 2]
  17. A robust and accurate adaptive approximation method for a diffuse-interface model of binary-fluid flows

    Demont, T.H.B. | van Zwieten, G.J. | Diddens, C. | van Brummelen, E.H.

    Computer Methods in Applied Mechanics and Engineering, Vol. 400 (2022), Iss. P.115563

    https://doi.org/10.1016/j.cma.2022.115563 [Citations: 3]
  18. Phase-field dynamics with transfer of materials: The Cahn–Hilliard equation with reaction rate dependent dynamic boundary conditions

    Knopf, Patrik | Lam, Kei Fong | Liu, Chun | Metzger, Stefan

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 55 (2021), Iss. 1 P.229

    https://doi.org/10.1051/m2an/2020090 [Citations: 24]
  19. Transport Processes at Fluidic Interfaces

    Fully Adaptive and Integrated Numerical Methods for the Simulation and Control of Variable Density Multiphase Flows Governed by Diffuse Interface Models

    Hintermüller, Michael | Hinze, Michael | Kahle, Christian | Keil, Tobias

    2017

    https://doi.org/10.1007/978-3-319-56602-3_13 [Citations: 0]
  20. On convergent schemes for a two-phase Oldroyd-B type model with variable polymer density

    Sieber, Oliver

    Journal of Numerical Mathematics, Vol. 28 (2020), Iss. 2 P.99

    https://doi.org/10.1515/jnma-2019-0019 [Citations: 1]
  21. On convergent schemes for two-phase flow of dilute polymeric solutions

    Metzger, Stefan

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 52 (2018), Iss. 6 P.2357

    https://doi.org/10.1051/m2an/2018042 [Citations: 7]
  22. Optimal Control of Sliding Droplets Using the Contact Angle Distribution

    Bonart, Henning | Kahle, Christian

    SIAM Journal on Control and Optimization, Vol. 59 (2021), Iss. 2 P.1057

    https://doi.org/10.1137/20M1317773 [Citations: 0]
  23. The stabilized penalty-projection finite element method for the Navier-Stokes-Cahn-Hilliard-Oono system

    Wang, Xue | Zou, Guang-an | Wang, Bo

    Applied Numerical Mathematics, Vol. 165 (2021), Iss. P.376

    https://doi.org/10.1016/j.apnum.2021.03.004 [Citations: 8]
  24. A convergent finite element scheme for a fourth-order liquid crystal model

    Metzger, Stefan

    IMA Journal of Numerical Analysis, Vol. 42 (2022), Iss. 1 P.440

    https://doi.org/10.1093/imanum/draa069 [Citations: 2]
  25. Convergence analysis of a decoupled pressure-correction SAV-FEM for the Cahn–Hilliard–Navier–Stokes model

    Yang, Jinting | Yi, Nianyu

    Journal of Computational and Applied Mathematics, Vol. 449 (2024), Iss. P.115985

    https://doi.org/10.1016/j.cam.2024.115985 [Citations: 0]
  26. Transport Processes at Fluidic Interfaces

    Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities

    Abels, Helmut | Garcke, Harald | Grün, Günther | Metzger, Stefan

    2017

    https://doi.org/10.1007/978-3-319-56602-3_8 [Citations: 4]
  27. A convergent SAV scheme for Cahn–Hilliard equations with dynamic boundary conditions

    Metzger, Stefan

    IMA Journal of Numerical Analysis, Vol. 43 (2023), Iss. 6 P.3593

    https://doi.org/10.1093/imanum/drac078 [Citations: 2]
  28. Global well-posedness and convergence to equilibrium for the Abels-Garcke-Grün model with nonlocal free energy

    Gal, Ciprian G. | Giorgini, Andrea | Grasselli, Maurizio | Poiatti, Andrea

    Journal de Mathématiques Pures et Appliquées, Vol. 178 (2023), Iss. P.46

    https://doi.org/10.1016/j.matpur.2023.07.005 [Citations: 4]
  29. Influence of Liquid Density and Surface Tension on the Pinning of Sliding Droplets on a Triangular Microstructure

    Bonart, Henning | Jung, Johannes | Kahle, Christian | Repke, Jens-Uwe

    Chemical Engineering & Technology, Vol. 42 (2019), Iss. 7 P.1381

    https://doi.org/10.1002/ceat.201900029 [Citations: 6]