On Fully Decoupled, Convergent Schemes for Diffuse Interface Models for Two-Phase Flow with General Mass Densities
Year: 2016
Communications in Computational Physics, Vol. 19 (2016), Iss. 5 : pp. 1473–1502
Abstract
In the first part, we study the convergence of discrete solutions to splitting schemes for two-phase flow with different mass densities suggested in [Guillen-Gonzalez, Tierra, J. Comput. Math. (6)2014]. They have been formulated for the diffuse interface model in [Abels, Garcke, Grün, M3AS, 2012, DOI: 10.1142/S0218202511500138] which is consistent with thermodynamics. Our technique covers various discretization methods for phase-field energies, ranging from convex-concave splitting to difference quotient approaches for the double-well potential. In the second part of the paper, numerical experiments are presented in two space dimensions to identify discretizations of Cahn-Hilliard energies which are φ-stable and which do not reduce the acceleration of falling droplets. Finally, 3d simulations in axial symmetric geometries are shown to underline even more the full practicality of the approach.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.scpde14.39s
Communications in Computational Physics, Vol. 19 (2016), Iss. 5 : pp. 1473–1502
Published online: 2016-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 30
-
Unconditionally energy stable numerical schemes for phase-field vesicle membrane model
Guillén-González, F. | Tierra, G.Journal of Computational Physics, Vol. 354 (2018), Iss. P.67
https://doi.org/10.1016/j.jcp.2017.10.060 [Citations: 28] -
Comparison of energy stable simulation of moving contact line problems using a thermodynamically consistent Cahn–Hilliard Navier–Stokes model
Bonart, Henning | Kahle, Christian | Repke, Jens-UweJournal of Computational Physics, Vol. 399 (2019), Iss. P.108959
https://doi.org/10.1016/j.jcp.2019.108959 [Citations: 14] -
Numerical approximation of a non-smooth phase-field model for multicomponent incompressible flow
Baňas, L’ubomír | Nürnberg, RobertESAIM: Mathematical Modelling and Numerical Analysis, Vol. 51 (2017), Iss. 3 P.1089
https://doi.org/10.1051/m2an/2016048 [Citations: 8] -
Energy Transfers in Atmosphere and Ocean
Diffuse Interface Approaches in Atmosphere and Ocean—Modeling and Numerical Implementation
Garcke, Harald | Hinze, Michael | Kahle, Christian2019
https://doi.org/10.1007/978-3-030-05704-6_9 [Citations: 0] -
Optimal Control of Droplets on a Solid Surface Using Distributed Contact Angles
Bonart, Henning | Kahle, Christian | Repke, Jens-UweLangmuir, Vol. 36 (2020), Iss. 30 P.8894
https://doi.org/10.1021/acs.langmuir.0c01242 [Citations: 3] -
Property-preserving numerical approximation of a Cahn–Hilliard–Navier–Stokes model with variable density and degenerate mobility
Acosta-Soba, Daniel | Guillén-González, Francisco | Rodríguez-Galván, J. Rafael | Wang, JinApplied Numerical Mathematics, Vol. 209 (2025), Iss. P.68
https://doi.org/10.1016/j.apnum.2024.11.005 [Citations: 0] -
An adaptive isogeometric analysis approach to elasto‐capillary fluid‐solid interaction
van Brummelen, E. H. | Demont, T. H. B. | van Zwieten, G. J.International Journal for Numerical Methods in Engineering, Vol. 122 (2021), Iss. 19 P.5331
https://doi.org/10.1002/nme.6388 [Citations: 12] -
A convergent stochastic scalar auxiliary variable method
Metzger, Stefan
IMA Journal of Numerical Analysis, Vol. (2024), Iss.
https://doi.org/10.1093/imanum/drae065 [Citations: 0] -
Unconditional stability and optimal error estimates of first order semi-implicit stabilized finite element method for two phase magnetohydrodynamic diffuse interface model
Chen, Chuanjun | Zhang, TongApplied Mathematics and Computation, Vol. 429 (2022), Iss. P.127238
https://doi.org/10.1016/j.amc.2022.127238 [Citations: 3] -
Stability of gravity-driven liquid films overflowing microstructures with sharp corners
Bonart, Henning | Rajes, Sangitha | Jung, Johannes | Repke, Jens-UwePhysical Review Fluids, Vol. 5 (2020), Iss. 9
https://doi.org/10.1103/PhysRevFluids.5.094001 [Citations: 3] -
Optimal control of time-discrete two-phase flow driven by a diffuse-interface model
Garcke, Harald | Hinze, Michael | Kahle, ChristianESAIM: Control, Optimisation and Calculus of Variations, Vol. 25 (2019), Iss. P.13
https://doi.org/10.1051/cocv/2018006 [Citations: 7] -
On stable, dissipation reducing splitting schemes for two-phase flow of electrolyte solutions
Metzger, Stefan
Numerical Algorithms, Vol. 80 (2019), Iss. 4 P.1361
https://doi.org/10.1007/s11075-018-0530-2 [Citations: 7] -
Global regularity and asymptotic stabilization for the incompressible Navier–Stokes-Cahn–Hilliard model with unmatched densities
Abels, Helmut | Garcke, Harald | Giorgini, AndreaMathematische Annalen, Vol. 389 (2024), Iss. 2 P.1267
https://doi.org/10.1007/s00208-023-02670-2 [Citations: 6] -
An Efficient and Convergent Finite Element Scheme for Cahn--Hilliard Equations with Dynamic Boundary Conditions
Metzger, Stefan
SIAM Journal on Numerical Analysis, Vol. 59 (2021), Iss. 1 P.219
https://doi.org/10.1137/19M1280740 [Citations: 8] -
On the Problem of Inertia in Classical Mechanics
He, Boshan
IOP Conference Series: Materials Science and Engineering, Vol. 740 (2020), Iss. 1 P.012115
https://doi.org/10.1088/1757-899X/740/1/012115 [Citations: 0] -
Numerical investigation of the sharp-interface limit of the Navier–Stokes–Cahn–Hilliard equations
Demont, T.H.B. | Stoter, S.K.F. | van Brummelen, E.H.Journal of Fluid Mechanics, Vol. 970 (2023), Iss.
https://doi.org/10.1017/jfm.2023.611 [Citations: 2] -
A robust and accurate adaptive approximation method for a diffuse-interface model of binary-fluid flows
Demont, T.H.B. | van Zwieten, G.J. | Diddens, C. | van Brummelen, E.H.Computer Methods in Applied Mechanics and Engineering, Vol. 400 (2022), Iss. P.115563
https://doi.org/10.1016/j.cma.2022.115563 [Citations: 3] -
Phase-field dynamics with transfer of materials: The Cahn–Hilliard equation with reaction rate dependent dynamic boundary conditions
Knopf, Patrik | Lam, Kei Fong | Liu, Chun | Metzger, StefanESAIM: Mathematical Modelling and Numerical Analysis, Vol. 55 (2021), Iss. 1 P.229
https://doi.org/10.1051/m2an/2020090 [Citations: 24] -
Transport Processes at Fluidic Interfaces
Fully Adaptive and Integrated Numerical Methods for the Simulation and Control of Variable Density Multiphase Flows Governed by Diffuse Interface Models
Hintermüller, Michael | Hinze, Michael | Kahle, Christian | Keil, Tobias2017
https://doi.org/10.1007/978-3-319-56602-3_13 [Citations: 0] -
On convergent schemes for a two-phase Oldroyd-B type model with variable polymer density
Sieber, Oliver
Journal of Numerical Mathematics, Vol. 28 (2020), Iss. 2 P.99
https://doi.org/10.1515/jnma-2019-0019 [Citations: 1] -
On convergent schemes for two-phase flow of dilute polymeric solutions
Metzger, Stefan
ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 52 (2018), Iss. 6 P.2357
https://doi.org/10.1051/m2an/2018042 [Citations: 7] -
Optimal Control of Sliding Droplets Using the Contact Angle Distribution
Bonart, Henning | Kahle, ChristianSIAM Journal on Control and Optimization, Vol. 59 (2021), Iss. 2 P.1057
https://doi.org/10.1137/20M1317773 [Citations: 0] -
The stabilized penalty-projection finite element method for the Navier-Stokes-Cahn-Hilliard-Oono system
Wang, Xue | Zou, Guang-an | Wang, BoApplied Numerical Mathematics, Vol. 165 (2021), Iss. P.376
https://doi.org/10.1016/j.apnum.2021.03.004 [Citations: 8] -
A convergent finite element scheme for a fourth-order liquid crystal model
Metzger, Stefan
IMA Journal of Numerical Analysis, Vol. 42 (2022), Iss. 1 P.440
https://doi.org/10.1093/imanum/draa069 [Citations: 2] -
Convergence analysis of a decoupled pressure-correction SAV-FEM for the Cahn–Hilliard–Navier–Stokes model
Yang, Jinting | Yi, NianyuJournal of Computational and Applied Mathematics, Vol. 449 (2024), Iss. P.115985
https://doi.org/10.1016/j.cam.2024.115985 [Citations: 0] -
Transport Processes at Fluidic Interfaces
Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities
Abels, Helmut | Garcke, Harald | Grün, Günther | Metzger, Stefan2017
https://doi.org/10.1007/978-3-319-56602-3_8 [Citations: 4] -
A convergent SAV scheme for Cahn–Hilliard equations with dynamic boundary conditions
Metzger, Stefan
IMA Journal of Numerical Analysis, Vol. 43 (2023), Iss. 6 P.3593
https://doi.org/10.1093/imanum/drac078 [Citations: 2] -
Global well-posedness and convergence to equilibrium for the Abels-Garcke-Grün model with nonlocal free energy
Gal, Ciprian G. | Giorgini, Andrea | Grasselli, Maurizio | Poiatti, AndreaJournal de Mathématiques Pures et Appliquées, Vol. 178 (2023), Iss. P.46
https://doi.org/10.1016/j.matpur.2023.07.005 [Citations: 4] -
Influence of Liquid Density and Surface Tension on the Pinning of Sliding Droplets on a Triangular Microstructure
Bonart, Henning | Jung, Johannes | Kahle, Christian | Repke, Jens-UweChemical Engineering & Technology, Vol. 42 (2019), Iss. 7 P.1381
https://doi.org/10.1002/ceat.201900029 [Citations: 6]