Year: 2015
Communications in Computational Physics, Vol. 18 (2015), Iss. 1 : pp. 104–124
Abstract
This paper presents a parallel algorithm for finding the smallest eigenvalue of a family of Hankel matrices that are ill-conditioned. Such matrices arise in random matrix theory and require the use of extremely high precision arithmetic. Surprisingly, we find that a group of commonly-used approaches that are designed for high efficiency are actually less efficient than a direct approach for this class of matrices. We then develop a parallel implementation of the algorithm that takes into account the unusually high cost of individual arithmetic operations. Our approach combines message passing and shared memory, achieving near-perfect scalability and high tolerance for network latency. We are thus able to find solutions for much larger matrices than previously possible, with the potential for extending this work to systems with greater levels of parallelism. The contributions of this work are in three areas: determination that a direct algorithm based on the secant method is more effective when extreme fixed-point precision is required than the algorithms more typically used in parallel floating-point computations; the particular mix of optimizations required for extreme precision large matrix operations on a modern multi-core cluster, and the numerical results themselves.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.260514.231214a
Communications in Computational Physics, Vol. 18 (2015), Iss. 1 : pp. 104–124
Published online: 2015-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 21
-
An adaptive-prediction-horizon model prediction control for path tracking in a four-wheel independent control electric vehicle
Zhang, Bing | Zong, Changfu | Chen, Guoying | Li, GuiyuanProceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 233 (2019), Iss. 12 P.3246
https://doi.org/10.1177/0954407018821527 [Citations: 25] -
The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight
Zhu, Mengkun | Emmart, Niall | Chen, Yang | Weems, CharlesMathematical Methods in the Applied Sciences, Vol. 42 (2019), Iss. 9 P.3272
https://doi.org/10.1002/mma.5583 [Citations: 5] -
The smallest eigenvalue of the Hankel matrices associated with a perturbed Jacobi weight
Wang, Yuxi | Chen, YangApplied Mathematics and Computation, Vol. 474 (2024), Iss. P.128615
https://doi.org/10.1016/j.amc.2024.128615 [Citations: 0] -
The smallest eigenvalue of large Hankel matrices generated by a singularly perturbed Laguerre weight
Zhu, Mengkun | Chen, Yang | Li, ChuanzhongJournal of Mathematical Physics, Vol. 61 (2020), Iss. 7
https://doi.org/10.1063/1.5140079 [Citations: 4] -
Electrical Vehicle Path Tracking Based Model Predictive Control With a Laguerre Function and Exponential Weight
Zhang, Bing | Zong, Changfu | Chen, Guoying | Zhang, BangchengIEEE Access, Vol. 7 (2019), Iss. P.17082
https://doi.org/10.1109/ACCESS.2019.2892746 [Citations: 48] -
Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation
Chen, Yang | Sikorowski, Jakub | Zhu, MengkunApplied Mathematics and Computation, Vol. 363 (2019), Iss. P.124628
https://doi.org/10.1016/j.amc.2019.124628 [Citations: 1] -
The smallest eigenvalue of large Hankel matrices
Zhu, Mengkun | Chen, Yang | Emmart, Niall | Weems, CharlesApplied Mathematics and Computation, Vol. 334 (2018), Iss. P.375
https://doi.org/10.1016/j.amc.2018.04.012 [Citations: 2] -
Model predictive path tracking control for automated road vehicles: A review
Stano, P. | Montanaro, U. | Tavernini, D. | Tufo, M. | Fiengo, G. | Novella, L. | Sorniotti, A.Annual Reviews in Control, Vol. 55 (2023), Iss. P.194
https://doi.org/10.1016/j.arcontrol.2022.11.001 [Citations: 44]