Error Estimates of Some Numerical Atomic Orbitals in Molecular Simulations

Error Estimates of Some Numerical Atomic Orbitals in Molecular Simulations

Year:    2015

Communications in Computational Physics, Vol. 18 (2015), Iss. 1 : pp. 125–146

Abstract

Numerical atomic orbitals have been successfully used in molecular simulations as a basis set, which provides a nature, physical description of the electronic states and is suitable for $\mathcal{O}$($N$) calculations based on the strictly localized property. This paper presents a numerical analysis for some simplified atomic orbitals, with polynomial-type and confined Hydrogen-like radial basis functions respectively. We give some a priori error estimates to understand why numerical atomic orbitals are computationally efficient in electronic structure calculations.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.170414.231214a

Communications in Computational Physics, Vol. 18 (2015), Iss. 1 : pp. 125–146

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    22

Keywords:   

  1. Density Functional Theory

    Augmented Plane Wave Methods for Full-Potential Calculations

    Chen, Huajie | Schneider, Reinhold

    2023

    https://doi.org/10.1007/978-3-031-22340-2_9 [Citations: 0]
  2. A posteriori error estimation for the non-self-consistent Kohn–Sham equations

    Herbst, Michael F. | Levitt, Antoine | Cancès, Eric

    Faraday Discussions, Vol. 224 (2020), Iss. P.227

    https://doi.org/10.1039/D0FD00048E [Citations: 8]
  3. Numerical analysis of multiple scattering theory for electronic structure calculations

    Li, Xiaoxu | Chen, Huajie | Gao, Xingyu

    IMA Journal of Numerical Analysis, Vol. 43 (2023), Iss. 4 P.2228

    https://doi.org/10.1093/imanum/drac040 [Citations: 1]
  4. Discretization error cancellation in electronic structure calculation: toward a quantitative study

    Cancès, Eric | Dusson, Geneviève

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 51 (2017), Iss. 5 P.1617

    https://doi.org/10.1051/m2an/2017035 [Citations: 8]
  5. A discontinuous Galerkin scheme for full-potential electronic structure calculations

    Li, Xiaoxu | Chen, Huajie

    Journal of Computational Physics, Vol. 385 (2019), Iss. P.33

    https://doi.org/10.1016/j.jcp.2019.02.006 [Citations: 2]
  6. Basis Sets in Computational Chemistry

    An Introduction to Discretization Error Analysis for Computational Chemists

    Cancès, Eric

    2021

    https://doi.org/10.1007/978-3-030-67262-1_4 [Citations: 0]