Go to previous page

The Diffused Vortex Hydrodynamics Method

The Diffused Vortex Hydrodynamics Method

Year:    2015

Communications in Computational Physics, Vol. 18 (2015), Iss. 2 : pp. 351–379

Abstract

A new Particle Vortex Method, called Diffused Vortex Hydrodynamics (DVH), is presented in this paper. The DVH is a meshless method characterized by the use of a regular distribution of points close to a solid surface to perform the vorticity diffusion process in the boundary layer regions. This redistribution avoids excessive clustering or rarefaction of the vortex particles providing robustness and high accuracy to the method. The generation of the regular distribution of points is performed through a packing algorithm which is embedded in the solver. The packing algorithm collocates points regularly around body of arbitrary shape allowing an exact enforcement on the solid surfaces of the no-slip boundary condition. The present method is tested and validated on different problems of increasing complexities up to flows with Reynolds number equal to 100,000 (without using any subgrid-scale turbulence model).

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.271014.200415a

Communications in Computational Physics, Vol. 18 (2015), Iss. 2 : pp. 351–379

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    29

Keywords:   

  1. Multiple bifurcations of the flow over stalled airfoils when changing the Reynolds number

    Rossi, E. | Colagrossi, A. | Oger, G. | Le Touzé, D.

    Journal of Fluid Mechanics, Vol. 846 (2018), Iss. P.356

    https://doi.org/10.1017/jfm.2018.189 [Citations: 31]
  2. A Review of Vortex Methods and Their Applications: From Creation to Recent Advances

    Mimeau, Chloé | Mortazavi, Iraj

    Fluids, Vol. 6 (2021), Iss. 2 P.68

    https://doi.org/10.3390/fluids6020068 [Citations: 47]
  3. Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows

    Sun, P.N. | Colagrossi, A. | Marrone, S. | Antuono, M. | Zhang, A.M.

    Computer Physics Communications, Vol. 224 (2018), Iss. P.63

    https://doi.org/10.1016/j.cpc.2017.11.016 [Citations: 175]
  4. On enhancement of energy conservation properties of projection-based particle methods

    Khayyer, Abbas | Gotoh, Hitoshi | Shimizu, Yuma | Gotoh, Kohji

    European Journal of Mechanics - B/Fluids, Vol. 66 (2017), Iss. P.20

    https://doi.org/10.1016/j.euromechflu.2017.01.014 [Citations: 95]
  5. Inclusion of an acoustic damper term in weakly-compressible SPH models

    Sun, P.N. | Pilloton, C. | Antuono, M. | Colagrossi, A.

    Journal of Computational Physics, Vol. 483 (2023), Iss. P.112056

    https://doi.org/10.1016/j.jcp.2023.112056 [Citations: 36]
  6. Conformal Mapping-Based Discrete Vortex Method for Simulating 2-D Flows around Arbitrary Cylinders

    Jin, Guoqing | Sun, Zhe | Zong, Zhi | Zou, Li | Hu, Yingjie

    Journal of Marine Science and Engineering, Vol. 9 (2021), Iss. 12 P.1409

    https://doi.org/10.3390/jmse9121409 [Citations: 2]
  7. A VOS based Immersed Boundary-Lattice Boltzmann method for incompressible fluid flows with complex and moving boundaries

    Cong, Longfei | Teng, Bin | Bai, Wei | Chen, Biaosong

    Computers & Fluids, Vol. 255 (2023), Iss. P.105832

    https://doi.org/10.1016/j.compfluid.2023.105832 [Citations: 6]
  8. Intermittency patterns in the chaotic transition of the planar flow past a circular cylinder

    Durante, D. | Pilloton, C. | Colagrossi, A.

    Physical Review Fluids, Vol. 7 (2022), Iss. 5

    https://doi.org/10.1103/PhysRevFluids.7.054701 [Citations: 6]
  9. Regimes identification of the viscous flow past an elliptic cylinder for Reynolds number up to 10000

    Durante, D. | Giannopoulou, O. | Colagrossi, A.

    Communications in Nonlinear Science and Numerical Simulation, Vol. 102 (2021), Iss. P.105902

    https://doi.org/10.1016/j.cnsns.2021.105902 [Citations: 8]
  10. Theδ-ALE-SPH model: An arbitrary Lagrangian-Eulerian framework for theδ-SPH model with particle shifting technique

    Antuono, M. | Sun, P.N. | Marrone, S. | Colagrossi, A.

    Computers & Fluids, Vol. 216 (2021), Iss. P.104806

    https://doi.org/10.1016/j.compfluid.2020.104806 [Citations: 66]
  11. A circle theorem technique to handle 2-D flows around arbitrary cylinders in discrete vortex method

    Jin, Guoqing | Zou, Li | Jiang, Yichen | Zong, Zhi | Sun, Zhe

    Journal of Wind Engineering and Industrial Aerodynamics, Vol. 209 (2021), Iss. P.104496

    https://doi.org/10.1016/j.jweia.2020.104496 [Citations: 9]
  12. Direct numerical simulations of three-dimensional flows past obstacles with a vortex penalization method

    Mimeau, C. | Cottet, G.-H. | Mortazavi, I.

    Computers & Fluids, Vol. 136 (2016), Iss. P.331

    https://doi.org/10.1016/j.compfluid.2016.06.020 [Citations: 22]
  13. Theδplus-SPH model: Simple procedures for a further improvement of the SPH scheme

    Sun, P.N. | Colagrossi, A. | Marrone, S. | Zhang, A.M.

    Computer Methods in Applied Mechanics and Engineering, Vol. 315 (2017), Iss. P.25

    https://doi.org/10.1016/j.cma.2016.10.028 [Citations: 267]
  14. Simulating 2D viscous flow around geometries with vertices through the Diffused Vortex Hydrodynamics method

    Rossi, E. | Colagrossi, A. | Durante, D. | Graziani, G.

    Computer Methods in Applied Mechanics and Engineering, Vol. 302 (2016), Iss. P.147

    https://doi.org/10.1016/j.cma.2016.01.006 [Citations: 26]
  15. Extraction of Lagrangian Coherent Structures in the framework of the Lagrangian–Eulerian Stabilized Collocation Method (LESCM)

    Qian, Zhihao | Liu, Moubin | Wang, Lihua | Zhang, Chuanzeng

    Computer Methods in Applied Mechanics and Engineering, Vol. 416 (2023), Iss. P.116372

    https://doi.org/10.1016/j.cma.2023.116372 [Citations: 8]
  16. Application of high accuracy Penalized Vortex in Cell method for the high Reynolds number turbomachinery flows.

    Błoński, Dominik | Kudela, Henryk | Strzelecka, Katarzyna

    Journal of Physics: Conference Series, Vol. 2367 (2022), Iss. 1 P.012007

    https://doi.org/10.1088/1742-6596/2367/1/012007 [Citations: 0]
  17. Comparisons of weakly-compressible and truly incompressible approaches for viscous flow into a high-order Cartesian-grid finite volume framework

    Vittoz, L. | Oger, G. | de Leffe, M. | Le Touzé, D.

    Journal of Computational Physics: X, Vol. 1 (2019), Iss. P.100015

    https://doi.org/10.1016/j.jcpx.2019.100015 [Citations: 5]
  18. A simple Eulerian–Lagrangian weakly compressible smoothed particle hydrodynamics method for fluid flow and heat transfer

    Yoo, Hee Sang | Jo, Young Beom | Kim, Jin Woo | Kim, Eung Soo | Choi, Tae Soo

    International Journal for Numerical Methods in Engineering, Vol. 124 (2023), Iss. 4 P.928

    https://doi.org/10.1002/nme.7148 [Citations: 5]
  19. Simulation of horizontal axis tidal turbine wakes using a Weakly-Compressible Cartesian Hydrodynamic solver with local mesh refinement

    Elie, B. | Oger, G. | Guillerm, P.-E. | Alessandrini, B.

    Renewable Energy, Vol. 108 (2017), Iss. P.336

    https://doi.org/10.1016/j.renene.2017.01.050 [Citations: 18]
  20. Efficient and accurate adaptive resolution for weakly-compressible SPH

    Muta, Abhinav | Ramachandran, Prabhu

    Computer Methods in Applied Mechanics and Engineering, Vol. 395 (2022), Iss. P.115019

    https://doi.org/10.1016/j.cma.2022.115019 [Citations: 8]
  21. Viscous flow past a cylinder close to a free surface: Benchmarks with steady, periodic and metastable responses, solved by meshfree and mesh-based schemes

    Colagrossi, A. | Nikolov, G. | Durante, D. | Marrone, S. | Souto-Iglesias, A.

    Computers & Fluids, Vol. 181 (2019), Iss. P.345

    https://doi.org/10.1016/j.compfluid.2019.01.007 [Citations: 30]
  22. Extension of the δ-Plus-SPH model for simulating Vortex-Induced-Vibration problems

    Sun, P.N. | Colagrossi, A. | Le Touzé, D. | Zhang, A.-M.

    Journal of Fluids and Structures, Vol. 90 (2019), Iss. P.19

    https://doi.org/10.1016/j.jfluidstructs.2019.06.004 [Citations: 41]
  23. A consistent approach to particle shifting in theδ-Plus-SPH model

    Sun, P.N. | Colagrossi, A. | Marrone, S. | Antuono, M. | Zhang, A.-M.

    Computer Methods in Applied Mechanics and Engineering, Vol. 348 (2019), Iss. P.912

    https://doi.org/10.1016/j.cma.2019.01.045 [Citations: 136]
  24. Bifurcations and chaos transition of the flow over an airfoil at low Reynolds number varying the angle of attack

    Durante, D. | Rossi, E. | Colagrossi, A.

    Communications in Nonlinear Science and Numerical Simulation, Vol. 89 (2020), Iss. P.105285

    https://doi.org/10.1016/j.cnsns.2020.105285 [Citations: 17]
  25. Numerical simulations of the transition from laminar to chaotic behaviour of the planar vortex flow past a circular cylinder

    Durante, D. | Rossi, E. | Colagrossi, A. | Graziani, G.

    Communications in Nonlinear Science and Numerical Simulation, Vol. 48 (2017), Iss. P.18

    https://doi.org/10.1016/j.cnsns.2016.12.013 [Citations: 33]
  26. High-order Eulerian SPH scheme through W/TENO reconstruction based on primitive variables for simulating incompressible flows

    Meng, Zi-Fei | Sun, Peng-Nan | Xu, Yang | Wang, Ping-Ping | Zhang, A-Man

    Computer Methods in Applied Mechanics and Engineering, Vol. 427 (2024), Iss. P.117065

    https://doi.org/10.1016/j.cma.2024.117065 [Citations: 3]
  27. SPH simulations of thixo-viscoplastic fluid flow past a cylinder

    Rossi, E. | Garcia de Beristain, I. | Vazquez-Quesada, A. | López-Aguilar, J.E. | Ellero, M.

    Journal of Non-Newtonian Fluid Mechanics, Vol. 308 (2022), Iss. P.104891

    https://doi.org/10.1016/j.jnnfm.2022.104891 [Citations: 8]
  28. Development of the full Lagrangian approach for modeling dilute dispersed media flows (a review)

    Osiptsov, А. N.

    Известия Российской академии наук. Механика жидкости и газа, Vol. (2024), Iss. 1 P.3

    https://doi.org/10.31857/S1024708424010012 [Citations: 0]
  29. Smoothed particle hydrodynamics and its applications in fluid-structure interactions

    Zhang, A-man | Sun, Peng-nan | Ming, Fu-ren | Colagrossi, A.

    Journal of Hydrodynamics, Vol. 29 (2017), Iss. 2 P.187

    https://doi.org/10.1016/S1001-6058(16)60730-8 [Citations: 168]
  30. Analysis of flow-induced vibration characteristics for flexible riser attached with non-rotating water-drop fairing

    Jin, Guoqing | Zong, Zhi | Sun, Zhe | Zou, Li | Wang, Hao

    Ocean Engineering, Vol. 262 (2022), Iss. P.112166

    https://doi.org/10.1016/j.oceaneng.2022.112166 [Citations: 6]
  31. Chorin’s approaches revisited: Vortex Particle Method vs Finite Volume Method

    Giannopoulou, O. | Colagrossi, A. | Di Mascio, A. | Mascia, C.

    Engineering Analysis with Boundary Elements, Vol. 106 (2019), Iss. P.371

    https://doi.org/10.1016/j.enganabound.2019.05.026 [Citations: 15]
  32. Particle Methods for Viscous Flows: Analogies and Differences Between the SPH and DVH Methods

    Colagrossi, Andrea | Rossi, Emanuele | Marrone, Salvatore | Touzé, David Le

    Communications in Computational Physics, Vol. 20 (2016), Iss. 3 P.660

    https://doi.org/10.4208/cicp.150915.170316a [Citations: 29]
  33. Development of the Full Lagrangian Approach for Modeling Dilute Dispersed Media Flows (a Review)

    Osiptsov, A. N.

    Fluid Dynamics, Vol. 59 (2024), Iss. 1 P.1

    https://doi.org/10.1134/S0015462823602425 [Citations: 4]
  34. Numerical analysis of vortex-induced vibration on a flexible cantilever riser for deep-sea mining system

    Jin, Guoqing | Zong, Zhi | Sun, Zhe | Zou, Li | Wang, Hao

    Marine Structures, Vol. 87 (2023), Iss. P.103334

    https://doi.org/10.1016/j.marstruc.2022.103334 [Citations: 11]
  35. A novel multi-resolution technique for solving complex vorticity patterns in planar viscous flows past bodies through the DVH method

    Rossi, E. | Durante, D. | Marrone, S. | Colagrossi, A.

    Computer Methods in Applied Mechanics and Engineering, Vol. 396 (2022), Iss. P.115082

    https://doi.org/10.1016/j.cma.2022.115082 [Citations: 3]
  36. A combined Lagrangian method for simulation of axisymmetric gas-particle vortex flows

    Lebedeva, N. A. | Osiptsov, A. N.

    Fluid Dynamics, Vol. 51 (2016), Iss. 5 P.647

    https://doi.org/10.1134/S0015462816050094 [Citations: 6]
  37. Numerical simulation of 3D vorticity dynamics with the Diffused Vortex Hydrodynamics method

    Durante, D. | Marrone, S. | Brömmel, D. | Speck, R. | Colagrossi, A.

    Mathematics and Computers in Simulation, Vol. 225 (2024), Iss. P.528

    https://doi.org/10.1016/j.matcom.2024.06.003 [Citations: 0]
  38. SPH energy conservation for fluid–solid interactions

    Cercos-Pita, J.L. | Antuono, M. | Colagrossi, A. | Souto-Iglesias, A.

    Computer Methods in Applied Mechanics and Engineering, Vol. 317 (2017), Iss. P.771

    https://doi.org/10.1016/j.cma.2016.12.037 [Citations: 40]
  39. An adaptive multi-moment FVM approach for incompressible flows

    Liu, Cheng | Hu, Changhong

    Journal of Computational Physics, Vol. 359 (2018), Iss. P.239

    https://doi.org/10.1016/j.jcp.2018.01.006 [Citations: 29]
  40. SPH modelling of viscous flow past a circular cylinder interacting with a free surface

    Bouscasse, Benjamin | Colagrossi, Andrea | Marrone, Salvatore | Souto-Iglesias, Antonio

    Computers & Fluids, Vol. 146 (2017), Iss. P.190

    https://doi.org/10.1016/j.compfluid.2017.01.011 [Citations: 69]