An Immersed Interface Method for Axisymmetric Electrohydrodynamic Simulations in Stokes Flow

An Immersed Interface Method for Axisymmetric Electrohydrodynamic Simulations in Stokes Flow

Year:    2015

Communications in Computational Physics, Vol. 18 (2015), Iss. 2 : pp. 429–449

Abstract

A numerical scheme based on the immersed interface method (IIM) is developed to simulate the dynamics of an axisymmetric viscous drop under an electric field. In this work, the IIM is used to solve both the fluid velocity field and the electric potential field. Detailed numerical studies on the numerical scheme show a second-order convergence. Moreover, our numerical scheme is validated by the good agreement with previous analytical models [1, 31, 39], and numerical results from the boundary integral simulations [17]. Our method can be extended to Navier-Stokes fluid flow with nonlinear inertia effects.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.171014.270315a

Communications in Computational Physics, Vol. 18 (2015), Iss. 2 : pp. 429–449

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    21

Keywords:   

  1. Effects of surfactant transport on electrodeformation of a viscous drop

    Nganguia, Herve | Pak, On Shun | Young, Y.-N.

    Physical Review E, Vol. 99 (2019), Iss. 6

    https://doi.org/10.1103/PhysRevE.99.063104 [Citations: 10]
  2. Transient oscillation response characteristics of an electrohydrodynamic settling drop subjected to a uniform electric field

    Zhang, Yi-Mo | Su, Zheng-Gang | Luo, Kang | Yi, Hong-Liang

    Physics of Fluids, Vol. 34 (2022), Iss. 4

    https://doi.org/10.1063/5.0086168 [Citations: 3]
  3. Pairwise interactions of surfactant-covered drops in a uniform electric field

    Sorgentone, Chiara | Vlahovska, Petia M.

    Physical Review Fluids, Vol. 6 (2021), Iss. 5

    https://doi.org/10.1103/PhysRevFluids.6.053601 [Citations: 12]
  4. Electrohydrodynamics of a viscous drop with inertia

    Nganguia, H. | Young, Y.-N. | Layton, A. T. | Lai, M.-C. | Hu, W.-F.

    Physical Review E, Vol. 93 (2016), Iss. 5

    https://doi.org/10.1103/PhysRevE.93.053114 [Citations: 23]
  5. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions

    Rivas, Nicolas | Frijters, Stefan | Pagonabarraga, Ignacio | Harting, Jens

    The Journal of Chemical Physics, Vol. 148 (2018), Iss. 14

    https://doi.org/10.1063/1.5020377 [Citations: 13]
  6. Influence of surface viscosities on the electrodeformation of a prolate viscous drop

    Nganguia, H. | Das, D. | Pak, O. S. | Young, Y.-N.

    Soft Matter, Vol. 19 (2023), Iss. 4 P.776

    https://doi.org/10.1039/D2SM01307J [Citations: 6]
  7. Effects of surfactant solubility on the hydrodynamics of a viscous drop in a dc electric field

    Nganguia, Herve | Hu, Wei-Fan | Lai, Ming-Chih | Young, Y.-N.

    Physical Review Fluids, Vol. 6 (2021), Iss. 6

    https://doi.org/10.1103/PhysRevFluids.6.064004 [Citations: 3]
  8. Electrohydrodynamics of Drops and Vesicles

    Vlahovska, Petia M.

    Annual Review of Fluid Mechanics, Vol. 51 (2019), Iss. 1 P.305

    https://doi.org/10.1146/annurev-fluid-122316-050120 [Citations: 107]
  9. A 3D boundary integral method for the electrohydrodynamics of surfactant-covered drops

    Sorgentone, Chiara | Tornberg, Anna-Karin | Vlahovska, Petia M.

    Journal of Computational Physics, Vol. 389 (2019), Iss. P.111

    https://doi.org/10.1016/j.jcp.2019.03.041 [Citations: 23]