Preconditioned Iterative Methods for Two-Dimensional Space-Fractional Diffusion Equations

Preconditioned Iterative Methods for Two-Dimensional Space-Fractional Diffusion Equations

Year:    2015

Communications in Computational Physics, Vol. 18 (2015), Iss. 2 : pp. 469–488

Abstract

In this paper, preconditioned iterative methods for solving two-dimensional space-fractional diffusion equations are considered. The fractional diffusion equation is discretized by a second-order finite difference scheme, namely, the Crank-Nicolson weighted and shifted Grünwald difference (CN-WSGD) scheme proposed in [W. Tian, H. Zhou and W. Deng, A class of second order difference approximation for solving space fractional diffusion equations, Math. Comp., 84 (2015) 1703-1727]. For the discretized linear systems, we first propose preconditioned iterative methods to solve them. Then we apply the D'Yakonov ADI scheme to split the linear systems and solve the obtained splitting systems by iterative methods. Two preconditioned iterative methods, the preconditioned generalized minimal residual (preconditioned GMRES) method and the preconditioned conjugate gradient normal residual (preconditioned CGNR) method, are proposed to solve relevant linear systems. By fully exploiting the structure of the coefficient matrix, we design two special kinds of preconditioners, which are easily constructed and are able to accelerate convergence of iterative solvers. Numerical results show the efficiency of our preconditioners.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.120314.230115a

Communications in Computational Physics, Vol. 18 (2015), Iss. 2 : pp. 469–488

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    20

Keywords:   

  1. Numerical Method for Solving the Nonlinear Superdiffusion Equation with Functional Delay

    Pimenov, Vladimir | Lekomtsev, Andrei

    Mathematics, Vol. 11 (2023), Iss. 18 P.3941

    https://doi.org/10.3390/math11183941 [Citations: 0]
  2. Gaussian radial basis function and quadrature Sinc method for two-dimensional space-fractional diffusion equations

    Noghrei, Nafiseh | Kerayechian, Asghar | Soheili, Ali R.

    Mathematical Sciences, Vol. 16 (2022), Iss. 1 P.87

    https://doi.org/10.1007/s40096-021-00397-2 [Citations: 2]
  3. Tensorized low-rank circulant preconditioners for multilevel Toeplitz linear systems from high-dimensional fractional Riesz equations

    Zhang, Lei | Zhang, Guo-Feng | Liang, Zhao-Zheng

    Computers & Mathematics with Applications, Vol. 110 (2022), Iss. P.64

    https://doi.org/10.1016/j.camwa.2022.01.003 [Citations: 0]
  4. On τ-preconditioner for a novel fourth-order difference scheme of two-dimensional Riesz space-fractional diffusion equations

    Huang, Yuan-Yuan | Qu, Wei | Lei, Siu-Long

    Computers & Mathematics with Applications, Vol. 145 (2023), Iss. P.124

    https://doi.org/10.1016/j.camwa.2023.06.015 [Citations: 3]
  5. Crank--Nicolson Alternative Direction Implicit Method for Space-Fractional Diffusion Equations with Nonseparable Coefficients

    Lin, Xue-lei | Ng, Michael K. | Sun, Hai-Wei

    SIAM Journal on Numerical Analysis, Vol. 57 (2019), Iss. 3 P.997

    https://doi.org/10.1137/18M1195693 [Citations: 16]
  6. Autocorrected preconditioning regularization inversion algorithm for an atmospheric turbulence profile

    Cheng, Zhi | He, Lixin | Zhang, Xin | Mu, Chao | Tan, Ming

    Applied Optics, Vol. 59 (2020), Iss. 28 P.8773

    https://doi.org/10.1364/AO.400202 [Citations: 3]
  7. Analysis of a hidden memory variably distributed-order space-fractional diffusion equation

    Jia, Jinhong | Wang, Hong

    Applied Mathematics Letters, Vol. 124 (2022), Iss. P.107617

    https://doi.org/10.1016/j.aml.2021.107617 [Citations: 10]
  8. Fast algorithms for high-dimensional variable-order space-time fractional diffusion equations

    Zhang, Lei | Zhang, Guo-Feng

    Computational and Applied Mathematics, Vol. 40 (2021), Iss. 4

    https://doi.org/10.1007/s40314-021-01496-5 [Citations: 1]
  9. Numerical Methods for Optimal Control Problems

    Fractional PDE Constrained Optimization: Box and Sparse Constrained Problems

    Durastante, Fabio | Cipolla, Stefano

    2018

    https://doi.org/10.1007/978-3-030-01959-4_6 [Citations: 1]
  10. Block preconditioning strategies for time–space fractional diffusion equations

    Chen, Hao | Zhang, Tongtong | Lv, Wen

    Applied Mathematics and Computation, Vol. 337 (2018), Iss. P.41

    https://doi.org/10.1016/j.amc.2018.05.001 [Citations: 3]
  11. Numerical Solution of the Time-Fractional Sub-Diffusion Equation on an Unbounded Domain in Two-Dimensional Space

    Li, Hongwei | Wu, Xiaonan | Zhang, Jiwei

    East Asian Journal on Applied Mathematics, Vol. 7 (2017), Iss. 3 P.439

    https://doi.org/10.4208/eajam.031116.080317a [Citations: 15]
  12. A Robust Preconditioner for Two-dimensional Conservative Space-Fractional Diffusion Equations on Convex Domains

    Chen, Xu | Deng, Si-Wen | Lei, Siu-Long

    Journal of Scientific Computing, Vol. 80 (2019), Iss. 2 P.1033

    https://doi.org/10.1007/s10915-019-00966-7 [Citations: 3]
  13. Efficient preconditioners for Radau-IIA time discretization of space fractional diffusion equations

    Chen, Hao | Xu, Dongping

    Numerical Algorithms, Vol. 83 (2020), Iss. 4 P.1349

    https://doi.org/10.1007/s11075-019-00728-4 [Citations: 1]
  14. Efficient preconditioner of one-sided space fractional diffusion equation

    Lin, Xue-Lei | Ng, Michael K. | Sun, Hai-Wei

    BIT Numerical Mathematics, Vol. 58 (2018), Iss. 3 P.729

    https://doi.org/10.1007/s10543-018-0699-8 [Citations: 22]
  15. A fast preconditioned iterative method for two-dimensional options pricing under fractional differential models

    Chen, Xu | Ding, Deng | Lei, Siu-Long | Wang, Wenfei

    Computers & Mathematics with Applications, Vol. 79 (2020), Iss. 2 P.440

    https://doi.org/10.1016/j.camwa.2019.07.010 [Citations: 4]
  16. Fast Solvers for Two-Dimensional Fractional Diffusion Equations Using Rank Structured Matrices

    Massei, Stefano | Mazza, Mariarosa | Robol, Leonardo

    SIAM Journal on Scientific Computing, Vol. 41 (2019), Iss. 4 P.A2627

    https://doi.org/10.1137/18M1180803 [Citations: 13]
  17. Fractional Laplace operator in two dimensions, approximating matrices, and related spectral analysis

    Aceto, Lidia | Mazza, Mariarosa | Serra-Capizzano, Stefano

    Calcolo, Vol. 57 (2020), Iss. 3

    https://doi.org/10.1007/s10092-020-00369-3 [Citations: 5]
  18. A Splitting Preconditioner for Toeplitz-Like Linear Systems Arising from Fractional Diffusion Equations

    Lin, Xue-lei | Ng, Michael K. | Sun, Hai-Wei

    SIAM Journal on Matrix Analysis and Applications, Vol. 38 (2017), Iss. 4 P.1580

    https://doi.org/10.1137/17M1115447 [Citations: 50]
  19. Block-circulant with circulant-block preconditioners for two-dimensional spatial fractional diffusion equations

    Ran, Yu-Hong | Wu, Qian-Qian

    Numerical Algorithms, Vol. (2024), Iss.

    https://doi.org/10.1007/s11075-024-01774-3 [Citations: 0]
  20. Kronecker product-based structure preserving preconditioner for three-dimensional space-fractional diffusion equations

    Chen, Hao | Lv, Wen

    International Journal of Computer Mathematics, Vol. 97 (2020), Iss. 3 P.585

    https://doi.org/10.1080/00207160.2019.1581177 [Citations: 3]
  21. A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations

    Lin, Xue-lei | Ng, Michael K. | Sun, Hai-Wei

    Journal of Computational Physics, Vol. 336 (2017), Iss. P.69

    https://doi.org/10.1016/j.jcp.2017.02.008 [Citations: 37]
  22. Finite difference approximation of space-fractional diffusion problems: The matrix transformation method

    Szekeres, Béla J. | Izsák, Ferenc

    Computers & Mathematics with Applications, Vol. 73 (2017), Iss. 2 P.261

    https://doi.org/10.1016/j.camwa.2016.11.021 [Citations: 11]
  23. A fast solver for multidimensional time–space fractional diffusion equation with variable coefficients

    Lin, Xue-Lei | Ng, Michael K.

    Computers & Mathematics with Applications, Vol. 78 (2019), Iss. 5 P.1477

    https://doi.org/10.1016/j.camwa.2019.04.012 [Citations: 9]
  24. Numerical method for two-dimensional space fractional equations with functional delay

    Pimenov, Vladimir | Hendy, Ahmed | Ibrahim, Mohammad

    PROCEEDINGS OF THE X ALL-RUSSIAN CONFERENCE “Actual Problems of Applied Mathematics and Mechanics” with International Participation, Dedicated to the Memory of Academician A.F. Sidorov and 100th Anniversary of UrFU: AFSID-2020, (2020), P.050017

    https://doi.org/10.1063/5.0035482 [Citations: 0]
  25. A $$\tau $$-Preconditioner for Space Fractional Diffusion Equation with Non-separable Variable Coefficients

    Lin, Xue-Lei | Ng, Michael K.

    Journal of Scientific Computing, Vol. 100 (2024), Iss. 1

    https://doi.org/10.1007/s10915-024-02574-6 [Citations: 0]
  26. A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations

    Chen, Hao | Lv, Wen | Zhang, Tongtong

    Journal of Computational Physics, Vol. 360 (2018), Iss. P.1

    https://doi.org/10.1016/j.jcp.2018.01.034 [Citations: 17]
  27. A τ-preconditioner for a non-symmetric linear system arising from multi-dimensional Riemann-Liouville fractional diffusion equation

    Lin, Xue-lei | Huang, Xin | Ng, Michael K. | Sun, Hai-Wei

    Numerical Algorithms, Vol. 92 (2023), Iss. 1 P.795

    https://doi.org/10.1007/s11075-022-01342-7 [Citations: 5]
  28. An efficient positive‐definite block‐preconditioned finite volume solver for two‐sided fractional diffusion equations on composite mesh

    Dai, Pingfei | Jia, Jinhong | Wang, Hong | Wu, Qingbiao | Zheng, Xiangcheng

    Numerical Linear Algebra with Applications, Vol. 28 (2021), Iss. 5

    https://doi.org/10.1002/nla.2372 [Citations: 1]
  29. Kronecker product based preconditioners for boundary value method discretizations of space fractional diffusion equations

    Chen, Hao | Huang, Qiuyue

    Mathematics and Computers in Simulation, Vol. 170 (2020), Iss. P.316

    https://doi.org/10.1016/j.matcom.2019.11.007 [Citations: 1]
  30. A fast numerical scheme for a variably distributed-order time-fractional diffusion equation and its analysis

    Jia, Jinhong | Wang, Hong | Zheng, Xiangcheng

    Computers & Mathematics with Applications, Vol. 108 (2022), Iss. P.24

    https://doi.org/10.1016/j.camwa.2021.12.016 [Citations: 6]
  31. A fast preconditioning iterative method for solving the discretized second-order space-fractional advection–diffusion equations

    Tang, Shi-Ping | Huang, Yu-Mei

    Journal of Computational and Applied Mathematics, Vol. 438 (2024), Iss. P.115513

    https://doi.org/10.1016/j.cam.2023.115513 [Citations: 1]
  32. PCG method with Strang’s circulant preconditioner for Hermitian positive definite linear system in Riesz space fractional advection–dispersion equations

    Qu, Wei | Shen, Hai-Wei | Liang, Yong

    Computational and Applied Mathematics, Vol. 37 (2018), Iss. 4 P.4554

    https://doi.org/10.1007/s40314-018-0586-6 [Citations: 3]
  33. Parallel-in-time multigrid for space–time finite element approximations of two-dimensional space-fractional diffusion equations

    Yue, Xiaoqiang | Shu, Shi | Xu, Xiaowen | Bu, Weiping | Pan, Kejia

    Computers & Mathematics with Applications, Vol. 78 (2019), Iss. 11 P.3471

    https://doi.org/10.1016/j.camwa.2019.05.017 [Citations: 17]
  34. An efficient matrix splitting preconditioning technique for two-dimensional unsteady space-fractional diffusion equations

    Dai, Pingfei | Wu, Qingbiao | Wang, Hong | Zheng, Xiangcheng

    Journal of Computational and Applied Mathematics, Vol. 371 (2020), Iss. P.112673

    https://doi.org/10.1016/j.cam.2019.112673 [Citations: 3]
  35. A preconditioned fast quadratic spline collocation method for two-sided space-fractional partial differential equations

    Liu, Jun | Fu, Hongfei | Wang, Hong | Chai, Xiaochao

    Journal of Computational and Applied Mathematics, Vol. 360 (2019), Iss. P.138

    https://doi.org/10.1016/j.cam.2019.03.048 [Citations: 26]
  36. Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations

    Moghaderi, Hamid | Dehghan, Mehdi | Donatelli, Marco | Mazza, Mariarosa

    Journal of Computational Physics, Vol. 350 (2017), Iss. P.992

    https://doi.org/10.1016/j.jcp.2017.08.064 [Citations: 53]
  37. A preconditioned fast finite element approximation to variable-order time-fractional diffusion equations in multiple space dimensions

    Jia, Jinhong | Wang, Hong | Zheng, Xiangcheng

    Applied Numerical Mathematics, Vol. 163 (2021), Iss. P.15

    https://doi.org/10.1016/j.apnum.2021.01.001 [Citations: 13]
  38. A Crank-Nicolson ADI quadratic spline collocation method for two-dimensional Riemann-Liouville space-fractional diffusion equations

    Liu, Jun | Zhu, Chen | Chen, Yanping | Fu, Hongfei

    Applied Numerical Mathematics, Vol. 160 (2021), Iss. P.331

    https://doi.org/10.1016/j.apnum.2020.10.015 [Citations: 7]
  39. A fast method for variable-order space-fractional diffusion equations

    Jia, Jinhong | Zheng, Xiangcheng | Fu, Hongfei | Dai, Pingfei | Wang, Hong

    Numerical Algorithms, Vol. 85 (2020), Iss. 4 P.1519

    https://doi.org/10.1007/s11075-020-00875-z [Citations: 22]
  40. An efficient quadratic finite volume method for variable coefficient Riesz space‐fractional diffusion equations

    Li, Fangli | Fu, Hongfei | Liu, Jun

    Mathematical Methods in the Applied Sciences, Vol. 44 (2021), Iss. 4 P.2934

    https://doi.org/10.1002/mma.6306 [Citations: 3]
  41. Fast TTTS iteration methods for implicit Runge-Kutta temporal discretization of Riesz space fractional advection-diffusion equations

    She, Zi-Hang | Qiu, Li-Min

    Computers & Mathematics with Applications, Vol. 141 (2023), Iss. P.42

    https://doi.org/10.1016/j.camwa.2023.03.012 [Citations: 2]
  42. Preconditioning techniques of all-at-once systems for multi-term time-fractional diffusion equations

    Gan, Di | Zhang, Guo-Feng | Liang, Zhao-Zheng

    Numerical Algorithms, Vol. 96 (2024), Iss. 4 P.1499

    https://doi.org/10.1007/s11075-023-01675-x [Citations: 1]
  43. Fast solution algorithms for exponentially tempered fractional diffusion equations

    Lei, Siu‐Long | Fan, Daoying | Chen, Xu

    Numerical Methods for Partial Differential Equations, Vol. 34 (2018), Iss. 4 P.1301

    https://doi.org/10.1002/num.22259 [Citations: 4]
  44. A fast ADI based matrix splitting preconditioning method for the high dimensional space fractional diffusion equations in conservative form

    Tang, Shi-Ping | Huang, Yu-Mei

    Computers & Mathematics with Applications, Vol. 144 (2023), Iss. P.210

    https://doi.org/10.1016/j.camwa.2023.05.028 [Citations: 4]