Immersed Boundary – Thermal Lattice Boltzmann Methods for Non-Newtonian Flows Over a Heated Cylinder: A Comparative Study

Immersed Boundary – Thermal Lattice Boltzmann Methods for Non-Newtonian Flows Over a Heated Cylinder: A Comparative Study

Year:    2015

Communications in Computational Physics, Vol. 18 (2015), Iss. 2 : pp. 489–515

Abstract

In this study, we compare different diffuse and sharp interface schemes of direct-forcing immersed boundary — thermal lattice Boltzmann method (IB-TLBM) for non-Newtonian flow over a heated circular cylinder. Both effects of the discrete lattice and the body force on the momentum and energy equations are considered, by applying the split-forcing Lattice Boltzmann equations. A new technique based on predetermined parameters of direct forcing IB-TLBM is presented for computing the Nusselt number. The study covers both steady and unsteady regimes (20<Re<80) in the power-law index range of 0.6<n<1.4, encompassing both shear-thinning and shear-thickening non-Newtonian fluids. The numerical scheme, hydrodynamic approach and thermal parameters of different interface schemes are compared in both steady and unsteady cases. It is found that the sharp interface scheme is a suitable and possibly competitive method for thermal-IBM in terms of accuracy and computational cost.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.060414.220115a

Communications in Computational Physics, Vol. 18 (2015), Iss. 2 : pp. 489–515

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    27

Keywords:   

  1. The effects of grain geometry on waterflooding and viscous fingering in micro-fractures and porous media from a lattice Boltzmann method study

    Shiri, Yousef | Hassani, Hossein | Nazari, Mohsen | Sharifi, Mohammad

    Molecular Simulation, Vol. 44 (2018), Iss. 9 P.708

    https://doi.org/10.1080/08927022.2018.1439585 [Citations: 1]
  2. Immersed boundary method for multiphase transport phenomena

    Xiao, Wei | Zhang, Hancong | Luo, Kun | Mao, Chaoli | Fan, Jianren

    Reviews in Chemical Engineering, Vol. 38 (2022), Iss. 4 P.363

    https://doi.org/10.1515/revce-2019-0076 [Citations: 13]
  3. Lattice Boltzmann Simulation of Spatial Fractional Convection–Diffusion Equation

    Bi, Xiaohua | Wang, Huimin

    Entropy, Vol. 26 (2024), Iss. 9 P.768

    https://doi.org/10.3390/e26090768 [Citations: 0]
  4. Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method

    Ma, Yuan | Mohebbi, Rasul | Rashidi, M. M. | Manca, O. | Yang, Zhigang

    Journal of Thermal Analysis and Calorimetry, Vol. 135 (2019), Iss. 6 P.3197

    https://doi.org/10.1007/s10973-018-7518-y [Citations: 70]
  5. Heat extraction study of a novel hydrothermal open-loop geothermal system in a multi-lateral horizontal well

    Wang, Gaosheng | Song, Xianzhi | Yu, Chao | Shi, Yu | Song, Guofeng | Xu, Fuqiang | Ji, Jiayan | Song, Zihao

    Energy, Vol. 242 (2022), Iss. P.122527

    https://doi.org/10.1016/j.energy.2021.122527 [Citations: 14]
  6. Natural convection and radiation heat transfer of power-law fluid food in symmetrical open containers

    Huang, Zhong | Li, Botong | Si, Xinhui | Yao, Chanjuan

    Journal of Thermal Analysis and Calorimetry, Vol. 144 (2021), Iss. 4 P.1287

    https://doi.org/10.1007/s10973-020-09616-9 [Citations: 0]
  7. Flow control of two tandem cylinders by a highly flexible filament: Lattice spring IB-LBM

    Afra, B. | Karimnejad, S. | Amiri Delouei, A. | Tarokh, A.

    Ocean Engineering, Vol. 250 (2022), Iss. P.111025

    https://doi.org/10.1016/j.oceaneng.2022.111025 [Citations: 53]
  8. General curved boundary treatment for two- and three-dimensional stationary and moving walls in flow and nonflow lattice Boltzmann simulations

    Mohammadipour, Omid Reza | Succi, Sauro | Niazmand, Hamid

    Physical Review E, Vol. 98 (2018), Iss. 2

    https://doi.org/10.1103/PhysRevE.98.023304 [Citations: 5]
  9. A non-Newtonian direct numerical study for stationary and moving objects with various shapes: An immersed boundary – Lattice Boltzmann approach

    Delouei, A. Amiri | Nazari, M. | Kayhani, M.H. | Ahmadi, G.

    Journal of Aerosol Science, Vol. 93 (2016), Iss. P.45

    https://doi.org/10.1016/j.jaerosci.2015.11.006 [Citations: 35]
  10. Fluid-structure interaction for the flexible filament's propulsion hanging in the free stream

    Afra, B. | Amiri Delouei, A. | Mostafavi, M. | Tarokh, A.

    Journal of Molecular Liquids, Vol. 323 (2021), Iss. P.114941

    https://doi.org/10.1016/j.molliq.2020.114941 [Citations: 38]
  11. Direct-forcing immersed boundary – non-Newtonian lattice Boltzmann method for transient non-isothermal sedimentation

    Amiri Delouei, A. | Nazari, M. | Kayhani, M.H. | Ahmadi, G.

    Journal of Aerosol Science, Vol. 104 (2017), Iss. P.106

    https://doi.org/10.1016/j.jaerosci.2016.09.002 [Citations: 42]
  12. Application of the immersed boundary method in solution of radiative heat transfer problems

    Mohammadi, Malihe | Nassab, Seyyed Abdolreza Gandjalikhan

    Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 260 (2021), Iss. P.107467

    https://doi.org/10.1016/j.jqsrt.2020.107467 [Citations: 9]
  13. Flow-induced rotation of circular cylinder in Poiseuille flow of power-law fluids

    Xia, Yi | Lin, Jianzhong | Ku, Xiaoke

    Journal of Non-Newtonian Fluid Mechanics, Vol. 260 (2018), Iss. P.120

    https://doi.org/10.1016/j.jnnfm.2018.07.003 [Citations: 16]
  14. Advances in Thermal Science and Energy

    Numerical Investigation of Mixed Convection Heat Transfer in a Lid-Driven Cavity with Two Embedded Rotating Cylinders Based on Immersed Boundary-Lattice Boltzmann Method

    Farkach, Younes | Derfoufi, Soufiane | Mahdaoui, Mustapha

    2024

    https://doi.org/10.1007/978-3-031-43934-6_16 [Citations: 0]
  15. Numerical simulation for water entry and exit of rigid bodies based on the immersed boundary-lattice Boltzmann method

    Xiao, Yucheng | Zhang, Guiyong | Hui, Da | Yan, Haoran | Feng, Song | Wang, Shuangqiang

    Journal of Fluids and Structures, Vol. 109 (2022), Iss. P.103486

    https://doi.org/10.1016/j.jfluidstructs.2021.103486 [Citations: 21]
  16. Immersed boundary—thermal lattice Boltzmann method for the moving simulation of non-isothermal elliptical particles

    Karimnejad, S. | Amiri Delouei, A. | Nazari, M. | Shahmardan, M. M. | Rashidi, M. M. | Wongwises, S.

    Journal of Thermal Analysis and Calorimetry, Vol. 138 (2019), Iss. 6 P.4003

    https://doi.org/10.1007/s10973-019-08329-y [Citations: 33]
  17. An improved immersed moving boundary for hydrodynamic force calculation in lattice Boltzmann method

    Chen, Zhiqiang | Wang, Moran

    International Journal for Numerical Methods in Engineering, Vol. 121 (2020), Iss. 20 P.4493

    https://doi.org/10.1002/nme.6444 [Citations: 5]
  18. Natural convection of power-law fluids under wall vibrations: A lattice Boltzmann study

    Xie, Jian-Fei | Cao, Bing-Yang

    Numerical Heat Transfer, Part A: Applications, Vol. 72 (2017), Iss. 8 P.600

    https://doi.org/10.1080/10407782.2017.1394134 [Citations: 11]
  19. Analysis of radiative heat transfer in two-dimensional irregular geometries by developed immersed boundary–lattice Boltzmann method

    Abaszadeh, Mahdi | Safavinejad, Ali | Amiri Delouei, Amin | Amiri, Hossein

    Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 280 (2022), Iss. P.108086

    https://doi.org/10.1016/j.jqsrt.2022.108086 [Citations: 37]
  20. Insights into the rheological behavior of ethanol-based metal oxide nanofluids

    Sun, Le | Zhao, Qianyun | Zhang, Yanmin | Gao, Wei | Jing, Dengwei

    Journal of Molecular Liquids, Vol. 323 (2021), Iss. P.115006

    https://doi.org/10.1016/j.molliq.2020.115006 [Citations: 9]
  21. Proposing a lattice spring damper model for simulation of interaction between elastic/ viscoelastic filaments and fluid flow in immersed boundary-lattice Boltzmann framework

    Gerivani, H. | Nazari, M.

    Journal of Molecular Liquids, Vol. 296 (2019), Iss. P.111969

    https://doi.org/10.1016/j.molliq.2019.111969 [Citations: 2]
  22. A general single-node second-order boundary condition for the lattice Boltzmann method

    Chen, Yong | Wang, Xiangyang | Zhu, Hanhua

    Physics of Fluids, Vol. 33 (2021), Iss. 4

    https://doi.org/10.1063/5.0046980 [Citations: 6]
  23. Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary–lattice Boltzmann approach

    Amiri Delouei, A. | Nazari, M. | Kayhani, M.H. | Kang, S.K. | Succi, S.

    Physica A: Statistical Mechanics and its Applications, Vol. 447 (2016), Iss. P.1

    https://doi.org/10.1016/j.physa.2015.11.032 [Citations: 55]
  24. Sedimentation of elliptical particles using Immersed Boundary – Lattice Boltzmann Method: A complementary repulsive force model

    Karimnejad, S. | Amiri Delouei, A. | Nazari, M. | Shahmardan, M.M. | Mohamad, A.A.

    Journal of Molecular Liquids, Vol. 262 (2018), Iss. P.180

    https://doi.org/10.1016/j.molliq.2018.04.075 [Citations: 59]
  25. Lattice Boltzmann simulation of convective heat transfer of non-Newtonian fluids in impeller stirred tank

    Chen, Chieh-Li | Chang, Shing-Cheng | Chen, Chih-Yung

    Applied Mathematical Modelling, Vol. 46 (2017), Iss. P.519

    https://doi.org/10.1016/j.apm.2017.01.088 [Citations: 16]
  26. Conjugated heat transfer of power-law fluids in double-pass concentric circular heat exchangers with sinusoidal wall fluxes

    Ho, Chii-Dong | Lin, Gwo-Geng | Chew, Thiam Leng | Lin, Li-Pang

    Mathematical Biosciences and Engineering, Vol. 18 (2021), Iss. 5 P.5592

    https://doi.org/10.3934/mbe.2021282 [Citations: 1]
  27. Direct Numerical Simulation of pulsating flow effect on the distribution of non-circular particles with increased levels of complexity: IB-LBM

    Amiri Delouei, Amin | Karimnejad, Sajjad | He, Fuli

    Computers & Mathematics with Applications, Vol. 121 (2022), Iss. P.115

    https://doi.org/10.1016/j.camwa.2022.07.005 [Citations: 46]
  28. A numerical study on elliptical particle deposition with an immersed boundary-lattice Boltzmann method

    Wang, Wen-Quan | Wang, Jinling | Cui, Guanzhe | Pei, Junxian | Yan, Yan

    Computers & Fluids, Vol. 246 (2022), Iss. P.105644

    https://doi.org/10.1016/j.compfluid.2022.105644 [Citations: 3]
  29. Nonsimilar Modeling and Numerical Simulations of Electromagnetic Radiative Flow of Nanofluid with Entropy Generation

    Hussain, Muzamil | Cui, Jifeng | Farooq, Umer | Ahmed Rabie, Mohammed Elamin | Muhammad, Taseer | Jajarmi, Amin

    Mathematical Problems in Engineering, Vol. 2022 (2022), Iss. P.1

    https://doi.org/10.1155/2022/4272566 [Citations: 15]
  30. A review on the application of lattice Boltzmann method for melting and solidification problems

    Samanta, Runa | Chattopadhyay, Himadri | Guha, Chandan

    Computational Materials Science, Vol. 206 (2022), Iss. P.111288

    https://doi.org/10.1016/j.commatsci.2022.111288 [Citations: 39]
  31. Direct numerical simulations of particle sedimentation with heat transfer using the Lattice Boltzmann method

    Yang, Bo | Chen, Sheng | Liu, Kai

    International Journal of Heat and Mass Transfer, Vol. 104 (2017), Iss. P.419

    https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.032 [Citations: 9]
  32. Pore-scale simulation of non-Newtonian power-law fluid flow and forced convection in partially porous media: Thermal lattice Boltzmann method

    Mohebbi, Rasul | Delouei, Amin Amiri | Jamali, Amin | Izadi, Mohsen | Mohamad, Abdulmajeed A.

    Physica A: Statistical Mechanics and its Applications, Vol. 525 (2019), Iss. P.642

    https://doi.org/10.1016/j.physa.2019.03.039 [Citations: 89]
  33. Investigation of the effect of the internal heating system position on heat transfer rate utilizing Cu/water nanofluid

    Sajjadi, H. | Mohammadifar, H. | Amiri Delouei, A.

    Journal of Thermal Analysis and Calorimetry, Vol. 139 (2020), Iss. 3 P.2035

    https://doi.org/10.1007/s10973-019-08611-z [Citations: 14]
  34. Examining of nanofluid natural convection heat transfer in a Γ-shaped enclosure including a rectangular hot obstacle using the lattice Boltzmann method

    Mohebbi, Rasul | Izadi, Mohsen | Sajjadi, Hasan | Delouei, Amin Amiri | Sheremet, Mikhail A.

    Physica A: Statistical Mechanics and its Applications, Vol. 526 (2019), Iss. P.120831

    https://doi.org/10.1016/j.physa.2019.04.067 [Citations: 64]
  35. Dynamics of water conveying copper and alumina nanomaterials when viscous dissipation and thermal radiation are significant: Single‐phase model with multiple solutions

    Lund, Liaquat Ali | Wakif, Abderrahim | Omar, Zurni | Khan, Ilyas | Animasaun, Isaac Lare

    Mathematical Methods in the Applied Sciences, Vol. 46 (2023), Iss. 10 P.11603

    https://doi.org/10.1002/mma.8270 [Citations: 15]
  36. An immersed boundary-lattice Boltzmann method combined with a robust lattice spring model for solving flow–structure interaction problems

    Afra, B. | Nazari, M. | Kayhani, M.H. | Delouei, A. Amiri | Ahmadi, G.

    Applied Mathematical Modelling, Vol. 55 (2018), Iss. P.502

    https://doi.org/10.1016/j.apm.2017.10.014 [Citations: 42]