Convergence Study of Moment Approximations for Boundary Value Problems of the Boltzmann-BGK Equation

Convergence Study of Moment Approximations for Boundary Value Problems of the Boltzmann-BGK Equation

Year:    2015

Communications in Computational Physics, Vol. 18 (2015), Iss. 3 : pp. 529–557

Abstract

The accuracy of moment equations as approximations of kinetic gas theory is studied for four different boundary value problems. The kinetic setting is given by the BGK equation linearized around a globally constant Maxwellian using one space dimension and a three-dimensional velocity space. The boundary value problems include Couette and Poiseuille flow as well as heat conduction between walls and heat conduction based on a locally varying heating source. The polynomial expansion of the distribution function allows for different moment theories of which two popular families are investigated in detail. Furthermore, optimal approximations for a given number of variables are studied empirically. The paper focuses on approximations with relatively low number of variables which allows to draw conclusions in particular about specific moment theories like the regularized 13-moment equations.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.061013.160215a

Communications in Computational Physics, Vol. 18 (2015), Iss. 3 : pp. 529–557

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    29

Keywords: