Modelling and Numerics for Respiratory Aerosols

Modelling and Numerics for Respiratory Aerosols

Year:    2015

Communications in Computational Physics, Vol. 18 (2015), Iss. 3 : pp. 723–756

Abstract

In this work, we present a model for an aerosol (air/particle mixture) in the respiratory system. It consists of the incompressible Navier-Stokes equations for the air and the Vlasov equation for the particles in a fixed or moving domain, coupled through a drag force. We propose a discretization of the model, investigate stability properties of the numerical code and sensitivity to parameter perturbation. We also focus on the influence of the aerosol on the airflow.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.180714.200415a

Communications in Computational Physics, Vol. 18 (2015), Iss. 3 : pp. 723–756

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    34

Keywords:   

  1. Convergence Rates and Fluctuations for the Stokes–Brinkman Equations as Homogenization Limit in Perforated Domains

    Höfer, Richard M. | Jansen, Jonas

    Archive for Rational Mechanics and Analysis, Vol. 248 (2024), Iss. 3

    https://doi.org/10.1007/s00205-024-01993-x [Citations: 0]
  2. Contrôlabilité de quelques équations cinétiques collisionnelles et non collisionnelles : Fokker-Planck et Vlasov-Navier-Stokes

    Moyano, Iván

    Séminaire Laurent Schwartz — EDP et applications, Vol. (2017), Iss. P.1

    https://doi.org/10.5802/slsedp.107 [Citations: 1]
  3. Aerosol transport throughout inspiration and expiration in the pulmonary airways

    Oakes, Jessica M. | Shadden, Shawn C. | Grandmont, Céline | Vignon‐Clementel, Irene E.

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 33 (2017), Iss. 9

    https://doi.org/10.1002/cnm.2847 [Citations: 29]
  4. Three-Dimensional Numerical Study of a Fluid-Kinetic Model for Respiratory Aerosols with Variable Size and Temperature

    Boudin, Laurent | Michel, David

    Journal of Computational and Theoretical Transport, Vol. 50 (2021), Iss. 5 P.507

    https://doi.org/10.1080/23324309.2021.1906705 [Citations: 0]
  5. Large-time behavior of small-data solutions to the Vlasov–Navier–Stokes system on the whole space

    Han-Kwan, Daniel

    Probability and Mathematical Physics, Vol. 3 (2022), Iss. 1 P.35

    https://doi.org/10.2140/pmp.2022.3.35 [Citations: 8]
  6. Global existence of weak solutions to the incompressible Vlasov–Navier–Stokes system coupled to convection–diffusion equations

    Boudin, Laurent | Michel, David | Moussa, Ayman

    Mathematical Models and Methods in Applied Sciences, Vol. 30 (2020), Iss. 08 P.1485

    https://doi.org/10.1142/S0218202520500293 [Citations: 5]
  7. Global-in-time dynamics of the two-phase fluid model in a bounded domain

    Jung, Jinwook

    Nonlinear Analysis, Vol. 223 (2022), Iss. P.113044

    https://doi.org/10.1016/j.na.2022.113044 [Citations: 1]
  8. On propagation of higher space regularity for nonlinear Vlasov equations

    Han-Kwan, Daniel

    Analysis & PDE, Vol. 12 (2019), Iss. 1 P.189

    https://doi.org/10.2140/apde.2019.12.189 [Citations: 4]
  9. Global existence of solutions to the incompressible Navier–Stokes–Vlasov equations in a time-dependent domain

    Boudin, Laurent | Grandmont, Céline | Moussa, Ayman

    Journal of Differential Equations, Vol. 262 (2017), Iss. 3 P.1317

    https://doi.org/10.1016/j.jde.2016.10.012 [Citations: 22]
  10. On the dynamics of charged particles in an incompressible flow: From kinetic-fluid to fluid–fluid models

    Choi, Young-Pil | Jung, Jinwook

    Communications in Contemporary Mathematics, Vol. 25 (2023), Iss. 07

    https://doi.org/10.1142/S0219199722500122 [Citations: 4]
  11. Large Time Behavior of the Vlasov–Navier–Stokes System on the Torus

    Han-Kwan, Daniel | Moussa, Ayman | Moyano, Iván

    Archive for Rational Mechanics and Analysis, Vol. 236 (2020), Iss. 3 P.1273

    https://doi.org/10.1007/s00205-020-01491-w [Citations: 19]
  12. Relative entropy and a weak–strong uniqueness principle for the compressible Navier–Stokes equations on moving domains

    Doboszczak, Stefan

    Applied Mathematics Letters, Vol. 57 (2016), Iss. P.60

    https://doi.org/10.1016/j.aml.2016.01.005 [Citations: 4]
  13. Computational modelling of the respiratory system: Discussion of coupled modelling approaches and two recent extensions

    Roth, Christian J. | Yoshihara, Lena | Ismail, Mahmoud | Wall, Wolfgang A.

    Computer Methods in Applied Mechanics and Engineering, Vol. 314 (2017), Iss. P.473

    https://doi.org/10.1016/j.cma.2016.08.010 [Citations: 33]
  14. The Vlasov–Navier–Stokes System in a 2D Pipe: Existence and Stability of Regular Equilibria

    Glass, Olivier | Han-Kwan, Daniel | Moussa, Ayman

    Archive for Rational Mechanics and Analysis, Vol. 230 (2018), Iss. 2 P.593

    https://doi.org/10.1007/s00205-018-1253-1 [Citations: 11]
  15. On Hydrodynamic Limits of the Vlasov–Navier–Stokes System

    Han-Kwan, Daniel | Michel, David

    Memoirs of the American Mathematical Society, Vol. 302 (2024), Iss. 1516

    https://doi.org/10.1090/memo/1516 [Citations: 0]
  16. Shock profiles for hydrodynamic models for fluid-particles flows in the flowing regime

    Goudon, Thierry | Lafitte, Pauline | Mascia, Corrado

    Physica D: Nonlinear Phenomena, Vol. 470 (2024), Iss. P.134357

    https://doi.org/10.1016/j.physd.2024.134357 [Citations: 0]
  17. Asymptotic analysis for a Vlasov–Fokker–Planck/Navier–Stokes system in a bounded domain

    Choi, Young-Pil | Jung, Jinwook

    Mathematical Models and Methods in Applied Sciences, Vol. 31 (2021), Iss. 11 P.2213

    https://doi.org/10.1142/S0218202521500482 [Citations: 18]