Year: 2015
Communications in Computational Physics, Vol. 18 (2015), Iss. 4 : pp. 881–900
Abstract
A finite volume simulation of unsteady vortical wake flow behind a square-back estate car is presented. The three-dimensional time-averaged incompressible Navier-Stokes equations are solved together with the Reynolds stress transport equations for turbulence. By virtue of the simulated surface streamlines, the physics of fluid can be extracted using the topological theory. In addition, the simulated topological singular points and lines of separation are plotted on the car surface. The vortical flow motions that developed behind the mirrors, wheels and car body are explored by means of the simulated time evolving vortex corelines. The formation and interaction of the vortex systems in the wake are examined by tracing the instantaneous streamlines in the vicinity of the simulated vortex corelines. The vortex street behind the estate car is also illustrated by the simulated streaklines. Finally the Hopf bifurcation phenomenon is revealed by the time-varying aerodynamic forces on the car.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.271114.250515s
Communications in Computational Physics, Vol. 18 (2015), Iss. 4 : pp. 881–900
Published online: 2015-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 20