Probabilistic High Order Numerical Schemes for Fully Nonlinear Parabolic PDEs

Probabilistic High Order Numerical Schemes for Fully Nonlinear Parabolic PDEs

Year:    2015

Communications in Computational Physics, Vol. 18 (2015), Iss. 5 : pp. 1482–1503

Abstract

In this paper, we are concerned with probabilistic high order numerical schemes for Cauchy problems of fully nonlinear parabolic PDEs. For such parabolic PDEs, it is shown by Cheridito, Soner, Touzi and Victoir [4] that the associated exact solutions admit probabilistic interpretations, i.e., the solution of a fully nonlinear parabolic PDE solves a corresponding second order forward backward stochastic differential equation (2FBSDEs). Our numerical schemes rely on solving those 2FBSDEs, by extending our previous results [W. Zhao, Y. Fu and T. Zhou, SIAM J. Sci. Comput., 36 (2014), pp. A1731-A1751.]. Moreover, in our numerical schemes, one has the flexibility to choose the associated forward SDE, and a suitable choice can significantly reduce the computational complexity. Various numerical examples including the HJB equations are presented to show the effectiveness and accuracy of the proposed numerical schemes.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.240515.280815a

Communications in Computational Physics, Vol. 18 (2015), Iss. 5 : pp. 1482–1503

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    22

Keywords: