Theoretical and Numerical Modeling of Nonlinear Electromechanics with Applications to Biological Active Media

Theoretical and Numerical Modeling of Nonlinear Electromechanics with Applications to Biological Active Media

Year:    2015

Communications in Computational Physics, Vol. 17 (2015), Iss. 1 : pp. 93–126

Abstract

We present a general theoretical framework for the formulation of the nonlinear electromechanics of polymeric and biological active media. The approach developed here is based on the additive decomposition of the Helmholtz free energy in elastic and inelastic parts and on the multiplicative decomposition of the deformation gradient in passive and active parts. We describe a thermodynamically sound scenario that accounts for geometric and material nonlinearities. In view of numerical applications, we specialize the general approach to a particular material model accounting for the behavior of fiber reinforced tissues. Specifically, we use the model to solve via finite elements a uniaxial electromechanical problem dynamically activated by an electrophysiological stimulus. Implications for nonlinear solid mechanics and computational electrophysiology are finally discussed.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.091213.260614a

Communications in Computational Physics, Vol. 17 (2015), Iss. 1 : pp. 93–126

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    34

Keywords:   

  1. Modelling the cardiac response to a mechanical stimulation using a low-order model of the heart

    Pearce, Nicholas | Kim, Eun-jin

    Mathematical Biosciences and Engineering, Vol. 18 (2021), Iss. 4 P.4871

    https://doi.org/10.3934/mbe.2021248 [Citations: 4]
  2. A curvilinear isogeometric framework for the electromechanical activation of thin muscular tissues

    Nitti, Alessandro | Kiendl, Josef | Gizzi, Alessio | Reali, Alessandro | de Tullio, Marco D.

    Computer Methods in Applied Mechanics and Engineering, Vol. 382 (2021), Iss. P.113877

    https://doi.org/10.1016/j.cma.2021.113877 [Citations: 16]
  3. Biological cells and coupled electro-mechanical effects: The role of organelles, microtubules, and nonlocal contributions

    Singh, Sundeep | Krishnaswamy, Jagdish A. | Melnik, Roderick

    Journal of the Mechanical Behavior of Biomedical Materials, Vol. 110 (2020), Iss. P.103859

    https://doi.org/10.1016/j.jmbbm.2020.103859 [Citations: 19]
  4. Loss of mass and performance in skeletal muscle tissue: a continuum model

    Giantesio, Giulia | Marzocchi, Alfredo | Musesti, Alessandro

    Communications in Applied and Industrial Mathematics, Vol. 9 (2018), Iss. 1 P.1

    https://doi.org/10.1515/caim-2018-0001 [Citations: 2]
  5. Sample-specific adaption of an improved electro-mechanical model of in vitro cardiac tissue

    Frotscher, Ralf | Muanghong, Danita | Dursun, Gözde | Goßmann, Matthias | Temiz-Artmann, Ayşegül | Staat, Manfred

    Journal of Biomechanics, Vol. 49 (2016), Iss. 12 P.2428

    https://doi.org/10.1016/j.jbiomech.2016.01.039 [Citations: 10]
  6. A generalized strain model for spectral rate-dependent constitutive equation of transversely isotropic electro-viscoelastic solids

    Shariff, M.H.B.M. | Bustamante, R. | Merodio, J.

    Journal of the Mechanics and Physics of Solids, Vol. 192 (2024), Iss. P.105838

    https://doi.org/10.1016/j.jmps.2024.105838 [Citations: 0]
  7. Relationships between serum electrolyte concentrations and ileus: A joint clinical and mathematical modeling study

    Penfold, James A. | Wells, Cameron I. | Du, Peng | Qian, Anna | Vather, Ryash | Bissett, Ian P. | O'Grady, Gregory

    Physiological Reports, Vol. 9 (2021), Iss. 3

    https://doi.org/10.14814/phy2.14735 [Citations: 8]
  8. Computational prediction of the effect of D172N KCNJ2 mutation on ventricular pumping during sinus rhythm and reentry

    Heikhmakhtiar, Aulia Khamas | Lee, Chung Hao | Song, Kwang Soup | Lim, Ki Moo

    Medical & Biological Engineering & Computing, Vol. 58 (2020), Iss. 5 P.977

    https://doi.org/10.1007/s11517-020-02124-w [Citations: 1]
  9. Anisotropic stiffness and tensional homeostasis induce a natural anisotropy of volumetric growth and remodeling in soft biological tissues

    Braeu, F. A. | Aydin, R. C. | Cyron, Christian J.

    Biomechanics and Modeling in Mechanobiology, Vol. 18 (2019), Iss. 2 P.327

    https://doi.org/10.1007/s10237-018-1084-x [Citations: 38]
  10. A modeling framework for electro-mechanical interaction between excitable deformable cells

    Lenarda, Pietro | Gizzi, Alessio | Paggi, Marco

    European Journal of Mechanics - A/Solids, Vol. 72 (2018), Iss. P.374

    https://doi.org/10.1016/j.euromechsol.2018.06.001 [Citations: 17]
  11. Integrated Heart—Coupling multiscale and multiphysics models for the simulation of the cardiac function

    Quarteroni, Alfio | Lassila, Toni | Rossi, Simone | Ruiz-Baier, Ricardo

    Computer Methods in Applied Mechanics and Engineering, Vol. 314 (2017), Iss. P.345

    https://doi.org/10.1016/j.cma.2016.05.031 [Citations: 179]
  12. Evolution of fiber distributions in homogenized constrained mixture models of soft tissue growth and remodeling: Uniaxial loading

    Gizzi, Alessio | Cyron, Christian J. | Falcinelli, Cristina | Vasta, Marcello

    Journal of the Mechanics and Physics of Solids, Vol. 183 (2024), Iss. P.105491

    https://doi.org/10.1016/j.jmps.2023.105491 [Citations: 5]
  13. Computational model of gastric motility with active‐strain electromechanics

    Brandstaeter, Sebastian | Gizzi, Alessio | Fuchs, Sebastian L. | Gebauer, Amadeus M. | Aydin, Roland C. | Cyron, Christian J.

    ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 98 (2018), Iss. 12 P.2177

    https://doi.org/10.1002/zamm.201800166 [Citations: 23]
  14. Temperature, geometry, and bifurcations in the numerical modeling of the cardiac mechano-electric feedback

    Collet, A. | Bragard, J. | Dauby, P. C.

    Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 27 (2017), Iss. 9

    https://doi.org/10.1063/1.5000710 [Citations: 10]
  15. Advanced Methods of Continuum Mechanics for Materials and Structures

    A Material Model for Electroactive Polymers

    Weinberg, Kerstin | Pandolfi, Anna

    2016

    https://doi.org/10.1007/978-981-10-0959-4_7 [Citations: 3]
  16. Modeling the Heart and the Circulatory System

    A Three-dimensional Continuum Model of Active Contraction in Single Cardiomyocytes

    Gizzi, Alessio | Ruiz-Baier, Ricardo | Rossi, Simone | Laadhari, Aymen | Cherubini, Christian | Filippi, Simonetta

    2015

    https://doi.org/10.1007/978-3-319-05230-4_6 [Citations: 9]
  17. Computationally Informed Design of a Multi-Axial Actuated Microfluidic Chip Device

    Gizzi, Alessio | Giannitelli, Sara Maria | Trombetta, Marcella | Cherubini, Christian | Filippi, Simonetta | De Ninno, Adele | Businaro, Luca | Gerardino, Annamaria | Rainer, Alberto

    Scientific Reports, Vol. 7 (2017), Iss. 1

    https://doi.org/10.1038/s41598-017-05237-9 [Citations: 8]
  18. A transversely isotropic thermo-hyperelastic constitutive model of myocardial tissue with a three-state cell death dynamics for cardiac radiofrequency ablation

    Molinari, Leonardo | Gerardo-Giorda, Luca | Gizzi, Alessio

    Journal of the Mechanics and Physics of Solids, Vol. 161 (2022), Iss. P.104810

    https://doi.org/10.1016/j.jmps.2022.104810 [Citations: 8]
  19. Biomechanical constitutive modeling of the gastrointestinal tissues: A systematic review

    Patel, Bhavesh | Gizzi, Alessio | Hashemi, Javad | Awakeem, Yousif | Gregersen, Hans | Kassab, Ghassan

    Materials & Design, Vol. 217 (2022), Iss. P.110576

    https://doi.org/10.1016/j.matdes.2022.110576 [Citations: 10]
  20. Computational analysis of the effect of mitral and aortic regurgitation on the function of ventricular assist devices using 3D cardiac electromechanical model

    Kim, Yoo Seok | Yuniarti, Ana R. | Song, Kwang-Soup | Trayanova, Natalia A. | Shim, Eun Bo | Lim, Ki Moo

    Medical & Biological Engineering & Computing, Vol. 56 (2018), Iss. 5 P.889

    https://doi.org/10.1007/s11517-017-1727-6 [Citations: 2]
  21. MODELING AND SIMULATION OF SKELETAL MUSCLE BASED ON COMBINED EXPONENTIAL AND POLYNOMIAL MODEL

    WANG, MONAN | AN, XIANJUN | YANG, NING

    Journal of Mechanics in Medicine and Biology, Vol. 17 (2017), Iss. 07 P.1740025

    https://doi.org/10.1142/S0219519417400255 [Citations: 1]
  22. Modeling of electrodynamic processes by means of mechanical analogies

    Ivanova, Elena A.

    ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 101 (2021), Iss. 4

    https://doi.org/10.1002/zamm.202000076 [Citations: 13]
  23. Derivation of the Macroscopic Intracellular Conductivity of Deformed Myocardium on the Basis of Microstructure Analysis

    Vasserman, I. N. | Matveenko, V. P. | Shardakov, I. N. | Shestakov, A. P.

    Biophysics, Vol. 63 (2018), Iss. 3 P.455

    https://doi.org/10.1134/S0006350918030247 [Citations: 3]
  24. Primal-mixed formulations for reaction–diffusion systems on deforming domains

    Ruiz-Baier, Ricardo

    Journal of Computational Physics, Vol. 299 (2015), Iss. P.320

    https://doi.org/10.1016/j.jcp.2015.07.018 [Citations: 14]
  25. Digital Twins for Digital Transformation: Innovation in Industry

    Towards the Development of a Digital Twin for Endoscopic Medical Device Testing

    Kalozoumis, Panagiotis G. | Marino, Michele | Carniel, Emanuele L. | Iakovidis, Dimitris K.

    2022

    https://doi.org/10.1007/978-3-030-96802-1_7 [Citations: 3]
  26. Competing Mechanisms of Stress-Assisted Diffusivity and Stretch-Activated Currents in Cardiac Electromechanics

    Loppini, Alessandro | Gizzi, Alessio | Ruiz-Baier, Ricardo | Cherubini, Christian | Fenton, Flavio H. | Filippi, Simonetta

    Frontiers in Physiology, Vol. 9 (2018), Iss.

    https://doi.org/10.3389/fphys.2018.01714 [Citations: 30]
  27. Viscoelectromechanics modeling of intestine wall hyperelasticity

    Gizzi, Alessio | Pandolfi, Anna | Vasta, Marcello

    International Journal for Computational Methods in Engineering Science and Mechanics, Vol. 17 (2016), Iss. 3 P.143

    https://doi.org/10.1080/15502287.2015.1082678 [Citations: 11]
  28. Coupled electro-mechanical models of fiber-distributed active tissues

    Pandolfi, Anna | Gizzi, Alessio | Vasta, Marcello

    Journal of Biomechanics, Vol. 49 (2016), Iss. 12 P.2436

    https://doi.org/10.1016/j.jbiomech.2016.01.038 [Citations: 21]
  29. Multi-band decomposition analysis: application to cardiac alternans as a function of temperature

    Gizzi, A | Loppini, A | Cherry, E M | Cherubini, C | Fenton, F H | Filippi, S

    Physiological Measurement, Vol. 38 (2017), Iss. 5 P.833

    https://doi.org/10.1088/1361-6579/aa64af [Citations: 19]
  30. A three-dimensional finite-element model of gluteus medius muscle incorporating inverse-dynamics-based optimization for simulation of non-uniform muscle contraction

    Li, Junyan | Marra, Marco A. | Verdonschot, Nico | Lu, Yongtao

    Medical Engineering & Physics, Vol. 87 (2021), Iss. P.38

    https://doi.org/10.1016/j.medengphy.2020.11.009 [Citations: 9]
  31. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics

    Zhang, Jinao | Zhong, Yongmin | Gu, Chengfan

    Medical & Biological Engineering & Computing, Vol. 56 (2018), Iss. 12 P.2163

    https://doi.org/10.1007/s11517-018-1849-5 [Citations: 3]
  32. Visco-electro-elastic models of fiber-distributed active tissues

    Pandolfi, Anna | Gizzi, Alessio | Vasta, Marcello

    Meccanica, Vol. 52 (2017), Iss. 14 P.3399

    https://doi.org/10.1007/s11012-017-0622-4 [Citations: 19]
  33. Modeling of physical fields by means of the Cosserat continuum

    Ivanova, Elena A.

    ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 103 (2023), Iss. 4

    https://doi.org/10.1002/zamm.202100333 [Citations: 4]
  34. Multiscale and Multiphysics Modeling of Anisotropic Cardiac RFCA: Experimental-Based Model Calibration via Multi-Point Temperature Measurements

    Molinari, Leonardo | Zaltieri, Martina | Massaroni, Carlo | Filippi, Simonetta | Gizzi, Alessio | Schena, Emiliano

    Frontiers in Physiology, Vol. 13 (2022), Iss.

    https://doi.org/10.3389/fphys.2022.845896 [Citations: 4]
  35. A three-compartment non-linear model of myocardial cell conduction block during photosensitization

    Ogawa, Emiyu | Aiyoshi, Eitaro | Arai, Tsunenori

    Medical & Biological Engineering & Computing, Vol. 59 (2021), Iss. 3 P.703

    https://doi.org/10.1007/s11517-021-02329-7 [Citations: 0]
  36. An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion

    Propp, Adrienne | Gizzi, Alessio | Levrero-Florencio, Francesc | Ruiz-Baier, Ricardo

    Biomechanics and Modeling in Mechanobiology, Vol. 19 (2020), Iss. 2 P.633

    https://doi.org/10.1007/s10237-019-01237-y [Citations: 19]
  37. A note on stress-driven anisotropic diffusion and its role in active deformable media

    Cherubini, Christian | Filippi, Simonetta | Gizzi, Alessio | Ruiz-Baier, Ricardo

    Journal of Theoretical Biology, Vol. 430 (2017), Iss. P.221

    https://doi.org/10.1016/j.jtbi.2017.07.013 [Citations: 38]