Computational Modeling of Membrane Viscosity of Red Blood Cells

Computational Modeling of Membrane Viscosity of Red Blood Cells

Year:    2015

Communications in Computational Physics, Vol. 17 (2015), Iss. 4 : pp. 1073–1087

Abstract

Despite its demonstrated importance in the deformation and dynamics of red blood cells, membrane viscosity has not received the same attention in computational models as elasticity and bending stiffness. Recent experiments on red blood cells indicated a power law response due to membrane viscosity. This is potentially much different from the solid viscoelastic models, such as Kelvin-Voigt and standard linear solid (SLS), currently used in computation to describe this aspect of the membrane. Within the context of a framework based on lattice Boltzmann and immersed boundary methods, we introduce SLS and power law models for membrane viscosity. We compare how the Kelvin-Voigt (as approximated by SLS) and power law models alter the deformation and dynamics of a spherical capsule in shear flows.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.2014.m355

Communications in Computational Physics, Vol. 17 (2015), Iss. 4 : pp. 1073–1087

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    15

Keywords:   

  1. Tank-treading dynamics of red blood cells in shear flow: On the membrane viscosity rheology

    Rezghi, Ali | Zhang, Junfeng

    Biophysical Journal, Vol. 121 (2022), Iss. 18 P.3393

    https://doi.org/10.1016/j.bpj.2022.08.016 [Citations: 8]
  2. Immersed boundary simulations of cell-cell interactions in whole blood

    Kassen, Andrew | Barrett, Aaron | Shankar, Varun | Fogelson, Aaron L.

    Journal of Computational Physics, Vol. 469 (2022), Iss. P.111499

    https://doi.org/10.1016/j.jcp.2022.111499 [Citations: 2]
  3. Localization of Rolling and Firm-Adhesive Interactions Between Circulating Tumor Cells and the Microvasculature Wall

    Dabagh, Mahsa | Gounley, John | Randles, Amanda

    Cellular and Molecular Bioengineering, Vol. 13 (2020), Iss. 2 P.141

    https://doi.org/10.1007/s12195-020-00610-7 [Citations: 21]
  4. A Level Set method for capturing interface deformation in immiscible stratified fluids

    Mancilla, Ernesto | Palacios-Muñoz, Alfonso | Salinas-Vázquez, Martín | Vicente, William | Ascanio, Gabriel

    International Journal of Heat and Fluid Flow, Vol. 76 (2019), Iss. P.170

    https://doi.org/10.1016/j.ijheatfluidflow.2019.01.014 [Citations: 4]
  5. Assessment of coupled bilayer–cytoskeleton modelling strategy for red blood cell dynamics in flow

    Puthumana, V. | Chen, P.G. | Leonetti, M. | Lasserre, R. | Jaeger, M.

    Journal of Fluid Mechanics, Vol. 979 (2024), Iss.

    https://doi.org/10.1017/jfm.2023.1092 [Citations: 1]
  6. A finite difference method with subsampling for immersed boundary simulations of the capsule dynamics with viscoelastic membranes

    Li, Ping | Zhang, Junfeng

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 35 (2019), Iss. 6

    https://doi.org/10.1002/cnm.3200 [Citations: 23]
  7. Role of deformable cancer cells on wall shear stress-associated-VEGF secretion by endothelium in microvasculature

    Dabagh, Mahsa | Randles, Amanda | del Alamo, Juan Carlos

    PLOS ONE, Vol. 14 (2019), Iss. 2 P.e0211418

    https://doi.org/10.1371/journal.pone.0211418 [Citations: 20]
  8. Numerical simulation of a compound capsule in a constricted microchannel

    Gounley, John | Draeger, Erik W. | Randles, Amanda

    Procedia Computer Science, Vol. 108 (2017), Iss. P.175

    https://doi.org/10.1016/j.procs.2017.05.209 [Citations: 28]
  9. Lattice Boltzmann equation with Overset method for moving objects in two-dimensional flows

    Lallemand, Pierre | Luo, Li-Shi

    Journal of Computational Physics, Vol. 407 (2020), Iss. P.109223

    https://doi.org/10.1016/j.jcp.2019.109223 [Citations: 13]
  10. Probing Red Blood Cell Membrane Microviscosity Using Fluorescence Anisotropy Decay Curves of the Lipophilic Dye PKH26

    Semenov, Alexey N. | Gvozdev, Daniil A. | Moysenovich, Anastasia M. | Zlenko, Dmitry V. | Parshina, Evgenia Yu. | Baizhumanov, Adil A. | Budylin, Gleb S. | Maksimov, Eugene G.

    International Journal of Molecular Sciences, Vol. 23 (2022), Iss. 24 P.15767

    https://doi.org/10.3390/ijms232415767 [Citations: 2]
  11. Lattice Boltzmann simulations on the tumbling to tank-treading transition: effects of membrane viscosity

    Guglietta, Fabio | Behr, Marek | Biferale, Luca | Falcucci, Giacomo | Sbragaglia, Mauro

    Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 379 (2021), Iss. 2208 P.20200395

    https://doi.org/10.1098/rsta.2020.0395 [Citations: 13]
  12. Similar but Distinct Roles of Membrane and Interior Fluid Viscosities in Capsule Dynamics in Shear Flows

    Li, Ping | Zhang, Junfeng

    Cardiovascular Engineering and Technology, Vol. 12 (2021), Iss. 2 P.232

    https://doi.org/10.1007/s13239-020-00517-4 [Citations: 19]
  13. Effects of membrane viscoelasticity on the red blood cell dynamics in a microcapillary

    Gürbüz, Ali | Pak, On Shun | Taylor, Michael | Sivaselvan, Mettupalayam V. | Sachs, Frederick

    Biophysical Journal, Vol. 122 (2023), Iss. 11 P.2230

    https://doi.org/10.1016/j.bpj.2023.01.010 [Citations: 5]
  14. The lattice Boltzmann method for nearly incompressible flows

    Lallemand, Pierre | Luo, Li-Shi | Krafczyk, Manfred | Yong, Wen-An

    Journal of Computational Physics, Vol. 431 (2021), Iss. P.109713

    https://doi.org/10.1016/j.jcp.2020.109713 [Citations: 64]
  15. Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes

    Li, Ping | Zhang, Junfeng

    Biomechanics and Modeling in Mechanobiology, Vol. 19 (2020), Iss. 6 P.2667

    https://doi.org/10.1007/s10237-020-01363-y [Citations: 11]
  16. Effect of sodium nitroprusside on the microrheological properties of red blood cells in different media

    Ermolinskiy, Petr | Maksimov, Matvey | Lugovtsov, Andrei | Muravyov, Alexey | Tikhomirova, Irina | Priezzhev, Alexander

    Journal of Innovative Optical Health Sciences, Vol. 17 (2024), Iss. 05

    https://doi.org/10.1142/S1793545823420014 [Citations: 1]
  17. Mathematical methods for modeling the microcirculation

    C. Arciero, Julia | Causin, Paola | Malgaroli, Francesca

    AIMS Biophysics, Vol. 4 (2017), Iss. 3 P.362

    https://doi.org/10.3934/biophy.2017.3.362 [Citations: 20]
  18. Computational interfacial rheology

    Jaensson, Nick O. | Anderson, Patrick D. | Vermant, Jan

    Journal of Non-Newtonian Fluid Mechanics, Vol. 290 (2021), Iss. P.104507

    https://doi.org/10.1016/j.jnnfm.2021.104507 [Citations: 45]