Year: 2015
Communications in Computational Physics, Vol. 17 (2015), Iss. 4 : pp. 1088–1112
Abstract
In this contribution, a new class of lattice Boltzmann schemes is introduced and studied. These schemes are presented in a framework that generalizes the multiple relaxation times method of d'Humières. They extend also the Geier's cascaded method. The relaxation phase takes place in a moving frame involving a set of moments depending on a given relative velocity field. We establish with the Taylor expansion method that the equivalent partial differential equations are identical to the ones obtained with the multiple relaxation times method up to the second order accuracy. The method is then performed to derive the equivalent equations up to third order accuracy.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.2014.m394
Communications in Computational Physics, Vol. 17 (2015), Iss. 4 : pp. 1088–1112
Published online: 2015-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 25
-
Theoretical and numerical analysis of the lattice kinetic scheme for complex-flow simulations
Hosseini, S. A. | Darabiha, N. | Thévenin, D.Physical Review E, Vol. 99 (2019), Iss. 2
https://doi.org/10.1103/PhysRevE.99.023305 [Citations: 11] -
Compressibility in lattice Boltzmann on standard stencils: effects of deviation from reference temperature
Hosseini, S. A. | Darabiha, N. | Thévenin, D.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 378 (2020), Iss. 2175 P.20190399
https://doi.org/10.1098/rsta.2019.0399 [Citations: 25] -
Central moment lattice Boltzmann method on a rectangular lattice
Yahia, Eman | Premnath, Kannan N.Physics of Fluids, Vol. 33 (2021), Iss. 5
https://doi.org/10.1063/5.0049231 [Citations: 10] -
Improving the stability of multiple-relaxation lattice Boltzmann methods with central moments
Chávez-Modena, M. | Ferrer, E. | Rubio, G.Computers & Fluids, Vol. 172 (2018), Iss. P.397
https://doi.org/10.1016/j.compfluid.2018.03.084 [Citations: 35] -
Nonlinear fourth order Taylor expansion of lattice Boltzmann schemes
Dubois, François
Asymptotic Analysis, Vol. 127 (2022), Iss. 4 P.297
https://doi.org/10.3233/ASY-211692 [Citations: 5] -
Gaussian Lattice Boltzmann method and its applications to rarefied flows
Ilyin, Oleg
Physics of Fluids, Vol. 32 (2020), Iss. 1
https://doi.org/10.1063/1.5126306 [Citations: 11] -
Stability of the lattice kinetic scheme and choice of the free relaxation parameter
Hosseini, S. A. | Coreixas, C. | Darabiha, N. | Thévenin, D.Physical Review E, Vol. 99 (2019), Iss. 6
https://doi.org/10.1103/PhysRevE.99.063305 [Citations: 32] -
On the stability of a relative velocity lattice Boltzmann scheme for compressible Navier–Stokes equations
Dubois, François | Février, Tony | Graille, BenjaminComptes Rendus. Mécanique, Vol. 343 (2015), Iss. 10-11 P.599
https://doi.org/10.1016/j.crme.2015.07.010 [Citations: 23] -
Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods
Wissocq, Gauthier | Coreixas, Christophe | Boussuge, Jean-FrançoisPhysical Review E, Vol. 102 (2020), Iss. 5
https://doi.org/10.1103/PhysRevE.102.053305 [Citations: 29] -
A notion of non-negativity preserving relaxation for a mono-dimensional three velocities scheme with relative velocity
Dubois, François | Graille, Benjamin | Rao, S.V. RaghuramaJournal of Computational Science, Vol. 47 (2020), Iss. P.101181
https://doi.org/10.1016/j.jocs.2020.101181 [Citations: 6] -
Parallel kinetic scheme for transport equations in complex toroidal geometry
Boileau, Matthieu | Bramas, Bérenger | Franck, Emmanuel | Hélie, Romane | Helluy, Philippe | Navoret, LaurentThe SMAI Journal of computational mathematics, Vol. 8 (2022), Iss. P.249
https://doi.org/10.5802/smai-jcm.86 [Citations: 1] -
A partitioned framework for coupling LBM and FEM through an implicit IBM allowing non-conforming time-steps: Application to fluid-structure interaction in biomechanics
Li, Zhe | Oger, Guillaume | Le Touzé, DavidJournal of Computational Physics, Vol. 449 (2022), Iss. P.110786
https://doi.org/10.1016/j.jcp.2021.110786 [Citations: 15] -
Impact of collision models on the physical properties and the stability of lattice Boltzmann methods
Coreixas, C. | Wissocq, G. | Chopard, B. | Latt, J.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 378 (2020), Iss. 2175 P.20190397
https://doi.org/10.1098/rsta.2019.0397 [Citations: 39] -
High-order regularization in lattice-Boltzmann equations
Mattila, Keijo K. | Philippi, Paulo C. | Hegele, Luiz A.Physics of Fluids, Vol. 29 (2017), Iss. 4
https://doi.org/10.1063/1.4981227 [Citations: 68] -
Universal formulation of central-moments-based lattice Boltzmann method with external forcing for the simulation of multiphysics phenomena
De Rosis, Alessandro | Huang, Rongzong | Coreixas, ChristophePhysics of Fluids, Vol. 31 (2019), Iss. 11
https://doi.org/10.1063/1.5124719 [Citations: 36] -
Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations
Coreixas, Christophe | Chopard, Bastien | Latt, JonasPhysical Review E, Vol. 100 (2019), Iss. 3
https://doi.org/10.1103/PhysRevE.100.033305 [Citations: 86] -
Hydrodynamic limits and numerical errors of isothermal lattice Boltzmann schemes
Wissocq, Gauthier | Sagaut, PierreJournal of Computational Physics, Vol. 450 (2022), Iss. P.110858
https://doi.org/10.1016/j.jcp.2021.110858 [Citations: 19] -
Stability limits of the single relaxation-time advection–diffusion lattice Boltzmann scheme
Hosseini, Seyed Ali | Darabiha, Nasser | Thévenin, Dominique | Eshghinejadfard, AmirInternational Journal of Modern Physics C, Vol. 28 (2017), Iss. 12 P.1750141
https://doi.org/10.1142/S0129183117501418 [Citations: 26]