Lattice Boltzmann Schemes with Relative Velocities

Lattice Boltzmann Schemes with Relative Velocities

Year:    2015

Communications in Computational Physics, Vol. 17 (2015), Iss. 4 : pp. 1088–1112

Abstract

In this contribution, a new class of lattice Boltzmann schemes is introduced and studied. These schemes are presented in a framework that generalizes the multiple relaxation times method of d'Humières. They extend also the Geier's cascaded method. The relaxation phase takes place in a moving frame involving a set of moments depending on a given relative velocity field. We establish with the Taylor expansion method that the equivalent partial differential equations are identical to the ones obtained with the multiple relaxation times method up to the second order accuracy. The method is then performed to derive the equivalent equations up to third order accuracy.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.2014.m394

Communications in Computational Physics, Vol. 17 (2015), Iss. 4 : pp. 1088–1112

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    25

Keywords:   

  1. Theoretical and numerical analysis of the lattice kinetic scheme for complex-flow simulations

    Hosseini, S. A. | Darabiha, N. | Thévenin, D.

    Physical Review E, Vol. 99 (2019), Iss. 2

    https://doi.org/10.1103/PhysRevE.99.023305 [Citations: 11]
  2. Compressibility in lattice Boltzmann on standard stencils: effects of deviation from reference temperature

    Hosseini, S. A. | Darabiha, N. | Thévenin, D.

    Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 378 (2020), Iss. 2175 P.20190399

    https://doi.org/10.1098/rsta.2019.0399 [Citations: 25]
  3. Central moment lattice Boltzmann method on a rectangular lattice

    Yahia, Eman | Premnath, Kannan N.

    Physics of Fluids, Vol. 33 (2021), Iss. 5

    https://doi.org/10.1063/5.0049231 [Citations: 10]
  4. Improving the stability of multiple-relaxation lattice Boltzmann methods with central moments

    Chávez-Modena, M. | Ferrer, E. | Rubio, G.

    Computers & Fluids, Vol. 172 (2018), Iss. P.397

    https://doi.org/10.1016/j.compfluid.2018.03.084 [Citations: 35]
  5. Nonlinear fourth order Taylor expansion of lattice Boltzmann schemes

    Dubois, François

    Asymptotic Analysis, Vol. 127 (2022), Iss. 4 P.297

    https://doi.org/10.3233/ASY-211692 [Citations: 5]
  6. Gaussian Lattice Boltzmann method and its applications to rarefied flows

    Ilyin, Oleg

    Physics of Fluids, Vol. 32 (2020), Iss. 1

    https://doi.org/10.1063/1.5126306 [Citations: 11]
  7. Stability of the lattice kinetic scheme and choice of the free relaxation parameter

    Hosseini, S. A. | Coreixas, C. | Darabiha, N. | Thévenin, D.

    Physical Review E, Vol. 99 (2019), Iss. 6

    https://doi.org/10.1103/PhysRevE.99.063305 [Citations: 32]
  8. On the stability of a relative velocity lattice Boltzmann scheme for compressible Navier–Stokes equations

    Dubois, François | Février, Tony | Graille, Benjamin

    Comptes Rendus. Mécanique, Vol. 343 (2015), Iss. 10-11 P.599

    https://doi.org/10.1016/j.crme.2015.07.010 [Citations: 23]
  9. Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods

    Wissocq, Gauthier | Coreixas, Christophe | Boussuge, Jean-François

    Physical Review E, Vol. 102 (2020), Iss. 5

    https://doi.org/10.1103/PhysRevE.102.053305 [Citations: 29]
  10. A notion of non-negativity preserving relaxation for a mono-dimensional three velocities scheme with relative velocity

    Dubois, François | Graille, Benjamin | Rao, S.V. Raghurama

    Journal of Computational Science, Vol. 47 (2020), Iss. P.101181

    https://doi.org/10.1016/j.jocs.2020.101181 [Citations: 6]
  11. Parallel kinetic scheme for transport equations in complex toroidal geometry

    Boileau, Matthieu | Bramas, Bérenger | Franck, Emmanuel | Hélie, Romane | Helluy, Philippe | Navoret, Laurent

    The SMAI Journal of computational mathematics, Vol. 8 (2022), Iss. P.249

    https://doi.org/10.5802/smai-jcm.86 [Citations: 1]
  12. A partitioned framework for coupling LBM and FEM through an implicit IBM allowing non-conforming time-steps: Application to fluid-structure interaction in biomechanics

    Li, Zhe | Oger, Guillaume | Le Touzé, David

    Journal of Computational Physics, Vol. 449 (2022), Iss. P.110786

    https://doi.org/10.1016/j.jcp.2021.110786 [Citations: 15]
  13. Impact of collision models on the physical properties and the stability of lattice Boltzmann methods

    Coreixas, C. | Wissocq, G. | Chopard, B. | Latt, J.

    Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 378 (2020), Iss. 2175 P.20190397

    https://doi.org/10.1098/rsta.2019.0397 [Citations: 39]
  14. High-order regularization in lattice-Boltzmann equations

    Mattila, Keijo K. | Philippi, Paulo C. | Hegele, Luiz A.

    Physics of Fluids, Vol. 29 (2017), Iss. 4

    https://doi.org/10.1063/1.4981227 [Citations: 68]
  15. Universal formulation of central-moments-based lattice Boltzmann method with external forcing for the simulation of multiphysics phenomena

    De Rosis, Alessandro | Huang, Rongzong | Coreixas, Christophe

    Physics of Fluids, Vol. 31 (2019), Iss. 11

    https://doi.org/10.1063/1.5124719 [Citations: 36]
  16. Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations

    Coreixas, Christophe | Chopard, Bastien | Latt, Jonas

    Physical Review E, Vol. 100 (2019), Iss. 3

    https://doi.org/10.1103/PhysRevE.100.033305 [Citations: 86]
  17. Hydrodynamic limits and numerical errors of isothermal lattice Boltzmann schemes

    Wissocq, Gauthier | Sagaut, Pierre

    Journal of Computational Physics, Vol. 450 (2022), Iss. P.110858

    https://doi.org/10.1016/j.jcp.2021.110858 [Citations: 19]
  18. Stability limits of the single relaxation-time advection–diffusion lattice Boltzmann scheme

    Hosseini, Seyed Ali | Darabiha, Nasser | Thévenin, Dominique | Eshghinejadfard, Amir

    International Journal of Modern Physics C, Vol. 28 (2017), Iss. 12 P.1750141

    https://doi.org/10.1142/S0129183117501418 [Citations: 26]