$L_2$ Convergence of the Lattice Boltzmann Method for One Dimensional Convection-Diffusion-Reaction Equations
Year: 2015
Communications in Computational Physics, Vol. 17 (2015), Iss. 5 : pp. 1225–1245
Abstract
Combining asymptotic analysis and weighted $L_2$ stability estimates, the convergence of lattice Boltzmann methods for the approximation of 1D convection-diffusion-reaction equations is proved. Unlike previous approaches, the proof does not require transformations to equivalent macroscopic equations.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.2014.m369
Communications in Computational Physics, Vol. 17 (2015), Iss. 5 : pp. 1225–1245
Published online: 2015-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 21
-
Unexpected convergence of lattice Boltzmann schemes
Boghosian, Bruce M. | Dubois, Francois | Graille, Benjamin | Lallemand, Pierre | Tekitek, Mohamed MahdiComputers & Fluids, Vol. 172 (2018), Iss. P.301
https://doi.org/10.1016/j.compfluid.2018.04.029 [Citations: 5] -
On a two-relaxation-time D2Q9 lattice Boltzmann model for the Navier–Stokes equations
Zhao, Weifeng | Wang, Liang | Yong, Wen-AnPhysica A: Statistical Mechanics and its Applications, Vol. 492 (2018), Iss. P.1570
https://doi.org/10.1016/j.physa.2017.11.082 [Citations: 13] -
Lattice Boltzmann Method for Stochastic Convection-Diffusion Equations
Zhao, Weifeng | Huang, Juntao | Yong, Wen-AnSIAM/ASA Journal on Uncertainty Quantification, Vol. 9 (2021), Iss. 2 P.536
https://doi.org/10.1137/19M1270665 [Citations: 2] -
OpenLB—Open source lattice Boltzmann code
Krause, Mathias J. | Kummerländer, Adrian | Avis, Samuel J. | Kusumaatmaja, Halim | Dapelo, Davide | Klemens, Fabian | Gaedtke, Maximilian | Hafen, Nicolas | Mink, Albert | Trunk, Robin | Marquardt, Jan E. | Maier, Marie-Luise | Haussmann, Marc | Simonis, StephanComputers & Mathematics with Applications, Vol. 81 (2021), Iss. P.258
https://doi.org/10.1016/j.camwa.2020.04.033 [Citations: 104] -
Initialisation from lattice Boltzmann to multi-step Finite Difference methods: Modified equations and discrete observability
Bellotti, Thomas
Journal of Computational Physics, Vol. 504 (2024), Iss. P.112871
https://doi.org/10.1016/j.jcp.2024.112871 [Citations: 3] -
On the stability of lattice boltzmann equations for one-dimensional diffusion equation
Krivovichev, Gerasim Vladimirovich
International Journal of Modeling, Simulation, and Scientific Computing, Vol. 08 (2017), Iss. 01 P.1750013
https://doi.org/10.1142/S1793962317500131 [Citations: 5] -
On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection–diffusion equations
Simonis, Stephan | Frank, Martin | Krause, Mathias J.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 378 (2020), Iss. 2175 P.20190400
https://doi.org/10.1098/rsta.2019.0400 [Citations: 13] -
Macroscopic model and truncation error of discrete Boltzmann method
Hwang, Yao-Hsin
Journal of Computational Physics, Vol. 322 (2016), Iss. P.52
https://doi.org/10.1016/j.jcp.2016.06.033 [Citations: 2] -
Finite Difference formulation of any lattice Boltzmann scheme
Bellotti, Thomas | Graille, Benjamin | Massot, MarcNumerische Mathematik, Vol. 152 (2022), Iss. 1 P.1
https://doi.org/10.1007/s00211-022-01302-2 [Citations: 18] -
Kinetic equations for modelling of diffusion processes by lattice Boltzmann method
Krivovichev, Gerasim Vladimirovich
Computer Research and Modeling, Vol. 9 (2017), Iss. 6 P.919
https://doi.org/10.20537/2076-7633-2017-9-6-919-936 [Citations: 0] -
Convergence of a quantum lattice Boltzmann scheme to the nonlinear Dirac equation for Gross-Neveu model in 1+1 dimensions
Li, Ningning | Zhang, Jing | Zhang, YongqianActa Mathematica Scientia, Vol. 44 (2024), Iss. 6 P.2249
https://doi.org/10.1007/s10473-024-0611-3 [Citations: 0] -
Linear Bhatnagar–Gross–Krook equations for simulation of linear diffusion equation by lattice Boltzmann method
Krivovichev, Gerasim V.
Applied Mathematics and Computation, Vol. 325 (2018), Iss. P.102
https://doi.org/10.1016/j.amc.2017.12.027 [Citations: 1] -
Stability investigation of finite-difference schemes of lattice Boltzmann method for diffusion modelling
Krivovichev, Gerasim Vladimirovich
Computer Research and Modeling, Vol. 8 (2016), Iss. 3 P.485
https://doi.org/10.20537/2076-7633-2016-8-3-485-500 [Citations: 1] -
Lattice Boltzmann method for convection-diffusion equations with general interfacial conditions
Hu, Zexi | Huang, Juntao | Yong, Wen-AnPhysical Review E, Vol. 93 (2016), Iss. 4
https://doi.org/10.1103/PhysRevE.93.043320 [Citations: 20] -
Numerical Analysis of the Lattice Boltzmann Method for the Boussinesq Equations
Yong, Wen-An | Zhao, WeifengJournal of Scientific Computing, Vol. 84 (2020), Iss. 2
https://doi.org/10.1007/s10915-020-01291-0 [Citations: 1] -
Lattice Boltzmann method for general convection-diffusion equations: MRT model and boundary schemes
Zhang, Mengxin | Zhao, Weifeng | Lin, PingJournal of Computational Physics, Vol. 389 (2019), Iss. P.147
https://doi.org/10.1016/j.jcp.2019.03.045 [Citations: 33]