$L_2$ Convergence of the Lattice Boltzmann Method for One Dimensional Convection-Diffusion-Reaction Equations

$L_2$ Convergence of the Lattice Boltzmann Method for One Dimensional Convection-Diffusion-Reaction Equations

Year:    2015

Communications in Computational Physics, Vol. 17 (2015), Iss. 5 : pp. 1225–1245

Abstract

Combining asymptotic analysis and weighted $L_2$ stability estimates, the convergence of lattice Boltzmann methods for the approximation of 1D convection-diffusion-reaction equations is proved. Unlike previous approaches, the proof does not require transformations to equivalent macroscopic equations.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.2014.m369

Communications in Computational Physics, Vol. 17 (2015), Iss. 5 : pp. 1225–1245

Published online:    2015-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    21

Keywords:   

  1. Unexpected convergence of lattice Boltzmann schemes

    Boghosian, Bruce M. | Dubois, Francois | Graille, Benjamin | Lallemand, Pierre | Tekitek, Mohamed Mahdi

    Computers & Fluids, Vol. 172 (2018), Iss. P.301

    https://doi.org/10.1016/j.compfluid.2018.04.029 [Citations: 5]
  2. On a two-relaxation-time D2Q9 lattice Boltzmann model for the Navier–Stokes equations

    Zhao, Weifeng | Wang, Liang | Yong, Wen-An

    Physica A: Statistical Mechanics and its Applications, Vol. 492 (2018), Iss. P.1570

    https://doi.org/10.1016/j.physa.2017.11.082 [Citations: 13]
  3. Lattice Boltzmann Method for Stochastic Convection-Diffusion Equations

    Zhao, Weifeng | Huang, Juntao | Yong, Wen-An

    SIAM/ASA Journal on Uncertainty Quantification, Vol. 9 (2021), Iss. 2 P.536

    https://doi.org/10.1137/19M1270665 [Citations: 2]
  4. OpenLB—Open source lattice Boltzmann code

    Krause, Mathias J. | Kummerländer, Adrian | Avis, Samuel J. | Kusumaatmaja, Halim | Dapelo, Davide | Klemens, Fabian | Gaedtke, Maximilian | Hafen, Nicolas | Mink, Albert | Trunk, Robin | Marquardt, Jan E. | Maier, Marie-Luise | Haussmann, Marc | Simonis, Stephan

    Computers & Mathematics with Applications, Vol. 81 (2021), Iss. P.258

    https://doi.org/10.1016/j.camwa.2020.04.033 [Citations: 104]
  5. Initialisation from lattice Boltzmann to multi-step Finite Difference methods: Modified equations and discrete observability

    Bellotti, Thomas

    Journal of Computational Physics, Vol. 504 (2024), Iss. P.112871

    https://doi.org/10.1016/j.jcp.2024.112871 [Citations: 3]
  6. On the stability of lattice boltzmann equations for one-dimensional diffusion equation

    Krivovichev, Gerasim Vladimirovich

    International Journal of Modeling, Simulation, and Scientific Computing, Vol. 08 (2017), Iss. 01 P.1750013

    https://doi.org/10.1142/S1793962317500131 [Citations: 5]
  7. On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection–diffusion equations

    Simonis, Stephan | Frank, Martin | Krause, Mathias J.

    Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 378 (2020), Iss. 2175 P.20190400

    https://doi.org/10.1098/rsta.2019.0400 [Citations: 13]
  8. Macroscopic model and truncation error of discrete Boltzmann method

    Hwang, Yao-Hsin

    Journal of Computational Physics, Vol. 322 (2016), Iss. P.52

    https://doi.org/10.1016/j.jcp.2016.06.033 [Citations: 2]
  9. Finite Difference formulation of any lattice Boltzmann scheme

    Bellotti, Thomas | Graille, Benjamin | Massot, Marc

    Numerische Mathematik, Vol. 152 (2022), Iss. 1 P.1

    https://doi.org/10.1007/s00211-022-01302-2 [Citations: 18]
  10. Kinetic equations for modelling of diffusion processes by lattice Boltzmann method

    Krivovichev, Gerasim Vladimirovich

    Computer Research and Modeling, Vol. 9 (2017), Iss. 6 P.919

    https://doi.org/10.20537/2076-7633-2017-9-6-919-936 [Citations: 0]
  11. Convergence of a quantum lattice Boltzmann scheme to the nonlinear Dirac equation for Gross-Neveu model in 1+1 dimensions

    Li, Ningning | Zhang, Jing | Zhang, Yongqian

    Acta Mathematica Scientia, Vol. 44 (2024), Iss. 6 P.2249

    https://doi.org/10.1007/s10473-024-0611-3 [Citations: 0]
  12. Linear Bhatnagar–Gross–Krook equations for simulation of linear diffusion equation by lattice Boltzmann method

    Krivovichev, Gerasim V.

    Applied Mathematics and Computation, Vol. 325 (2018), Iss. P.102

    https://doi.org/10.1016/j.amc.2017.12.027 [Citations: 1]
  13. Stability investigation of finite-difference schemes of lattice Boltzmann method for diffusion modelling

    Krivovichev, Gerasim Vladimirovich

    Computer Research and Modeling, Vol. 8 (2016), Iss. 3 P.485

    https://doi.org/10.20537/2076-7633-2016-8-3-485-500 [Citations: 1]
  14. Lattice Boltzmann method for convection-diffusion equations with general interfacial conditions

    Hu, Zexi | Huang, Juntao | Yong, Wen-An

    Physical Review E, Vol. 93 (2016), Iss. 4

    https://doi.org/10.1103/PhysRevE.93.043320 [Citations: 20]
  15. Numerical Analysis of the Lattice Boltzmann Method for the Boussinesq Equations

    Yong, Wen-An | Zhao, Weifeng

    Journal of Scientific Computing, Vol. 84 (2020), Iss. 2

    https://doi.org/10.1007/s10915-020-01291-0 [Citations: 1]
  16. Lattice Boltzmann method for general convection-diffusion equations: MRT model and boundary schemes

    Zhang, Mengxin | Zhao, Weifeng | Lin, Ping

    Journal of Computational Physics, Vol. 389 (2019), Iss. P.147

    https://doi.org/10.1016/j.jcp.2019.03.045 [Citations: 33]