Year: 2014
Communications in Computational Physics, Vol. 16 (2014), Iss. 2 : pp. 307–347
Abstract
We present new large time step methods for the shallow water flows in the low Froude number limit. In order to take into account multiscale phenomena that typically appear in geophysical flows nonlinear fluxes are split into a linear part governing the gravitational waves and the nonlinear advection. We propose to approximate fast linear waves implicitly in time and in space by means of a genuinely multidimensional evolution operator. On the other hand, we approximate nonlinear advection part explicitly in time and in space by means of the method of characteristics or some standard numerical flux function. Time integration is realized by the implicit-explicit (IMEX) method. We apply the IMEX Euler scheme, two step Runge Kutta Cranck Nicolson scheme, as well as the semi-implicit BDF scheme and prove their asymptotic preserving property in the low Froude number limit. Numerical experiments demonstrate stability, accuracy and robustness of these new large time step finite volume schemes with respect to small Froude number.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.040413.160114a
Communications in Computational Physics, Vol. 16 (2014), Iss. 2 : pp. 307–347
Published online: 2014-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 41
Keywords: Low Froude number flows
-
Analysis of an asymptotic preserving low mach number accurate IMEX-RK scheme for the wave equation system
Arun, K.R. | Das Gupta, A.J. | Samantaray, S.Applied Mathematics and Computation, Vol. 411 (2021), Iss. P.126469
https://doi.org/10.1016/j.amc.2021.126469 [Citations: 0] -
Theory, Numerics and Applications of Hyperbolic Problems II
Asymptotic Consistency of the RS-IMEX Scheme for the Low-Froude Shallow Water Equations: Analysis and Numerics
Zakerzadeh, Hamed
2018
https://doi.org/10.1007/978-3-319-91548-7_50 [Citations: 0] -
Asymptotic Preserving Error Estimates for Numerical Solutions of Compressible Navier--Stokes Equations in the Low Mach Number Regime
Feireisl, Eduard | Lukáčová-Medviďová, Mária | Nečasová, Šárka | Novotný, Antonín | She, BangweiMultiscale Modeling & Simulation, Vol. 16 (2018), Iss. 1 P.150
https://doi.org/10.1137/16M1094233 [Citations: 17] -
An asymptotic preserving and energy stable scheme for the Euler-Poisson system in the quasineutral limit
Arun, K.R. | Ghorai, Rahuldev | Kar, MainakApplied Numerical Mathematics, Vol. 198 (2024), Iss. P.375
https://doi.org/10.1016/j.apnum.2024.01.018 [Citations: 0] -
Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation
Bispen, Georgij | Lukáčová-Medvid'ová, Mária | Yelash, LeonidJournal of Computational Physics, Vol. 335 (2017), Iss. P.222
https://doi.org/10.1016/j.jcp.2017.01.020 [Citations: 51] -
Неявно-явные бикомпактные схемы для гиперболических систем законов сохранения
Брагин, Михаил Дмитриевич | Bragin, Mikhail DmitrievichМатематическое моделирование, Vol. 34 (2022), Iss. 6 P.3
https://doi.org/10.20948/mm-2022-06-01 [Citations: 2] -
A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics
Noelle, S. | Bispen, G. | Arun, K. R. | Lukáčová-Medviďová, M. | Munz, C.-D.SIAM Journal on Scientific Computing, Vol. 36 (2014), Iss. 6 P.B989
https://doi.org/10.1137/120895627 [Citations: 63] -
High Order Structure-Preserving Finite Difference WENO Schemes for MHD Equations with Gravitation in all Sonic Mach Numbers
Chen, Wei | Wu, Kailiang | Xiong, TaoJournal of Scientific Computing, Vol. 99 (2024), Iss. 2
https://doi.org/10.1007/s10915-024-02492-7 [Citations: 0] -
Energy-stable staggered schemes for the Shallow Water equations
Duran, Arnaud | Vila, Jean-Paul | Baraille, RémyJournal of Computational Physics, Vol. 401 (2020), Iss. P.109051
https://doi.org/10.1016/j.jcp.2019.109051 [Citations: 8] -
Implicit-Explicit Bicompact Schemes for Hyperbolic Systems of Conservation Laws
Bragin, M. D.
Mathematical Models and Computer Simulations, Vol. 15 (2023), Iss. 1 P.1
https://doi.org/10.1134/S2070048223010064 [Citations: 2] -
An asymptotic preserving semi-implicit multiderivative solver
Schütz, Jochen | Seal, David C.Applied Numerical Mathematics, Vol. 160 (2021), Iss. P.84
https://doi.org/10.1016/j.apnum.2020.09.004 [Citations: 10] -
Parallel-in-Time High-Order Multiderivative IMEX Solvers
Schütz, Jochen | Seal, David C. | Zeifang, JonasJournal of Scientific Computing, Vol. 90 (2022), Iss. 1
https://doi.org/10.1007/s10915-021-01733-3 [Citations: 5] -
An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces
Liu, Xin | Chertock, Alina | Kurganov, AlexanderJournal of Computational Physics, Vol. 391 (2019), Iss. P.259
https://doi.org/10.1016/j.jcp.2019.04.035 [Citations: 15] -
An Asymptotic Preserving and Energy Stable Scheme for the Barotropic Euler System in the Incompressible Limit
Arun, K. R. | Ghorai, Rahuldev | Kar, MainakJournal of Scientific Computing, Vol. 97 (2023), Iss. 3
https://doi.org/10.1007/s10915-023-02389-x [Citations: 2] -
Asymptotic Preserving Low Mach Number Accurate IMEX Finite Volume Schemes for the Isentropic Euler Equations
Arun, K. R. | Samantaray, S.Journal of Scientific Computing, Vol. 82 (2020), Iss. 2
https://doi.org/10.1007/s10915-020-01138-8 [Citations: 10] -
High Order Asymptotic Preserving and Classical Semi-implicit RK Schemes for the Euler–Poisson System in the Quasineutral Limit
Arun, K. R. | Crouseilles, N. | Samantaray, S.Journal of Scientific Computing, Vol. 100 (2024), Iss. 1
https://doi.org/10.1007/s10915-024-02577-3 [Citations: 0] -
Efficient high-order discontinuous Galerkin computations of low Mach number flows
Zeifang, Jonas | Kaiser, Klaus | Beck, Andrea | Schütz, Jochen | Munz, Claus-DieterCommunications in Applied Mathematics and Computational Science, Vol. 13 (2018), Iss. 2 P.243
https://doi.org/10.2140/camcos.2018.13.243 [Citations: 11] -
High order well-balanced asymptotic preserving IMEX RKDG schemes for the two-dimensional nonlinear shallow water equations
Xie, Xian | Dong, Haiyun | Li, MaojunJournal of Computational Physics, Vol. 510 (2024), Iss. P.113092
https://doi.org/10.1016/j.jcp.2024.113092 [Citations: 0] -
A New Stable Splitting for the Isentropic Euler Equations
Kaiser, Klaus | Schütz, Jochen | Schöbel, Ruth | Noelle, SebastianJournal of Scientific Computing, Vol. 70 (2017), Iss. 3 P.1390
https://doi.org/10.1007/s10915-016-0286-6 [Citations: 17] -
Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations
Kučera, Václav | Lukáčová-Medvid’ová, Mária | Noelle, Sebastian | Schütz, JochenNumerische Mathematik, Vol. 150 (2022), Iss. 1 P.79
https://doi.org/10.1007/s00211-021-01240-5 [Citations: 3] -
Consistent section-averaged shallow water equations with bottom friction
Michel-Dansac, Victor | Noble, Pascal | Vila, Jean-PaulEuropean Journal of Mechanics - B/Fluids, Vol. 86 (2021), Iss. P.123
https://doi.org/10.1016/j.euromechflu.2020.12.005 [Citations: 6] -
A Well-Balanced Asymptotic Preserving Scheme for the Two-Dimensional Rotating Shallow Water Equations with Nonflat Bottom Topography
Kurganov, Alexander | Liu, Yongle | Lukáčová-Medviďová, MáriaSIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 3 P.A1655
https://doi.org/10.1137/21M141573X [Citations: 4] -
A Well-Balanced Asymptotic Preserving Scheme for the Two-Dimensional Shallow Water Equations Over Irregular Bottom Topography
Liu, Xin
SIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 5 P.B1136
https://doi.org/10.1137/19M1262590 [Citations: 5] -
Implicit and implicit-explicit Lagrange-projection finite volume schemes exactly well-balanced for 1D shallow water system
Caballero-Cárdenas, C. | Castro, M.J. | Morales de Luna, T. | Muñoz-Ruiz, M.L.Applied Mathematics and Computation, Vol. 443 (2023), Iss. P.127784
https://doi.org/10.1016/j.amc.2022.127784 [Citations: 2] -
A Semi-Implicit Fully Exactly Well-Balanced Relaxation Scheme for the Shallow Water System
Caballero-Cárdenas, Celia | Castro, Manuel Jesús | Chalons, Christophe | Morales de Luna, Tomás | Muñoz-Ruiz, María LuzSIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 4 P.A2503
https://doi.org/10.1137/23M1621289 [Citations: 0] -
High order well-balanced asymptotic preserving finite difference WENO schemes for the shallow water equations in all Froude numbers
Huang, Guanlan | Xing, Yulong | Xiong, TaoJournal of Computational Physics, Vol. 463 (2022), Iss. P.111255
https://doi.org/10.1016/j.jcp.2022.111255 [Citations: 13] -
A staggered semi-implicit hybrid finite volume / finite element scheme for the shallow water equations at all Froude numbers
Busto, S. | Dumbser, M.Applied Numerical Mathematics, Vol. 175 (2022), Iss. P.108
https://doi.org/10.1016/j.apnum.2022.02.005 [Citations: 20] -
TVD-MOOD schemes based on implicit-explicit time integration
Michel-Dansac, Victor | Thomann, AndreaApplied Mathematics and Computation, Vol. 433 (2022), Iss. P.127397
https://doi.org/10.1016/j.amc.2022.127397 [Citations: 2] -
A unified asymptotic preserving and well-balanced scheme for the Euler system with multiscale relaxation
Arun, K.R. | Krishnan, M. | Samantaray, S.Computers & Fluids, Vol. 233 (2022), Iss. P.105248
https://doi.org/10.1016/j.compfluid.2021.105248 [Citations: 1] -
A Fully Well-Balanced Lagrange--Projection-Type Scheme for the Shallow-Water Equations
Castro Díaz, Manuel J. | Chalons, Christophe | de Luna, Tomás MoralesSIAM Journal on Numerical Analysis, Vol. 56 (2018), Iss. 5 P.3071
https://doi.org/10.1137/17M1156101 [Citations: 13] -
Asymptotic analysis of the RS-IMEX scheme for the shallow water equations in one space dimension
Zakerzadeh, Hamed
ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 3 P.893
https://doi.org/10.1051/m2an/2019005 [Citations: 2] -
A new stable splitting for singularly perturbed ODEs
Schütz, Jochen | Kaiser, KlausApplied Numerical Mathematics, Vol. 107 (2016), Iss. P.18
https://doi.org/10.1016/j.apnum.2016.04.004 [Citations: 10] -
On the Construction of Conservative Semi-Lagrangian IMEX Advection Schemes for Multiscale Time Dependent PDEs
Boscheri, Walter | Tavelli, Maurizio | Pareschi, LorenzoJournal of Scientific Computing, Vol. 90 (2022), Iss. 3
https://doi.org/10.1007/s10915-022-01768-0 [Citations: 3] -
A High-Order Method for Weakly Compressible Flows
Kaiser, Klaus | Schütz, JochenCommunications in Computational Physics, Vol. 22 (2017), Iss. 4 P.1150
https://doi.org/10.4208/cicp.OA-2017-0028 [Citations: 8] -
IMEX HDG-DG: A coupled implicit hybridized discontinuous Galerkin and explicit discontinuous Galerkin approach for shallow water systems
Kang, Shinhoo | Giraldo, Francis X. | Bui-Thanh, TanJournal of Computational Physics, Vol. 401 (2020), Iss. P.109010
https://doi.org/10.1016/j.jcp.2019.109010 [Citations: 12] -
Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems
The RS-IMEX Scheme for the Rotating Shallow Water Equations with the Coriolis Force
Zakerzadeh, Hamed
2017
https://doi.org/10.1007/978-3-319-57394-6_22 [Citations: 2]