IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows

IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows

Year:    2014

Communications in Computational Physics, Vol. 16 (2014), Iss. 2 : pp. 307–347

Abstract

We present new large time step methods for the shallow water flows in the low Froude number limit. In order to take into account multiscale phenomena that typically appear in geophysical flows nonlinear fluxes are split into a linear part governing the gravitational waves and the nonlinear advection. We propose to approximate fast linear waves implicitly in time and in space by means of a genuinely multidimensional evolution operator. On the other hand, we approximate nonlinear advection part explicitly in time and in space by means of the method of characteristics or some standard numerical flux function. Time integration is realized by the implicit-explicit (IMEX) method. We apply the IMEX Euler scheme, two step Runge Kutta Cranck Nicolson scheme, as well as the semi-implicit BDF scheme and prove their asymptotic preserving property in the low Froude number limit. Numerical experiments demonstrate stability, accuracy and robustness of these new large time step finite volume schemes with respect to small Froude number.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.040413.160114a

Communications in Computational Physics, Vol. 16 (2014), Iss. 2 : pp. 307–347

Published online:    2014-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    41

Keywords:    Low Froude number flows

  1. Analysis of an asymptotic preserving low mach number accurate IMEX-RK scheme for the wave equation system

    Arun, K.R. | Das Gupta, A.J. | Samantaray, S.

    Applied Mathematics and Computation, Vol. 411 (2021), Iss. P.126469

    https://doi.org/10.1016/j.amc.2021.126469 [Citations: 0]
  2. Theory, Numerics and Applications of Hyperbolic Problems II

    Asymptotic Consistency of the RS-IMEX Scheme for the Low-Froude Shallow Water Equations: Analysis and Numerics

    Zakerzadeh, Hamed

    2018

    https://doi.org/10.1007/978-3-319-91548-7_50 [Citations: 0]
  3. Asymptotic Preserving Error Estimates for Numerical Solutions of Compressible Navier--Stokes Equations in the Low Mach Number Regime

    Feireisl, Eduard | Lukáčová-Medviďová, Mária | Nečasová, Šárka | Novotný, Antonín | She, Bangwei

    Multiscale Modeling & Simulation, Vol. 16 (2018), Iss. 1 P.150

    https://doi.org/10.1137/16M1094233 [Citations: 17]
  4. An asymptotic preserving and energy stable scheme for the Euler-Poisson system in the quasineutral limit

    Arun, K.R. | Ghorai, Rahuldev | Kar, Mainak

    Applied Numerical Mathematics, Vol. 198 (2024), Iss. P.375

    https://doi.org/10.1016/j.apnum.2024.01.018 [Citations: 0]
  5. Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation

    Bispen, Georgij | Lukáčová-Medvid'ová, Mária | Yelash, Leonid

    Journal of Computational Physics, Vol. 335 (2017), Iss. P.222

    https://doi.org/10.1016/j.jcp.2017.01.020 [Citations: 51]
  6. Неявно-явные бикомпактные схемы для гиперболических систем законов сохранения

    Брагин, Михаил Дмитриевич | Bragin, Mikhail Dmitrievich

    Математическое моделирование, Vol. 34 (2022), Iss. 6 P.3

    https://doi.org/10.20948/mm-2022-06-01 [Citations: 2]
  7. A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics

    Noelle, S. | Bispen, G. | Arun, K. R. | Lukáčová-Medviďová, M. | Munz, C.-D.

    SIAM Journal on Scientific Computing, Vol. 36 (2014), Iss. 6 P.B989

    https://doi.org/10.1137/120895627 [Citations: 63]
  8. High Order Structure-Preserving Finite Difference WENO Schemes for MHD Equations with Gravitation in all Sonic Mach Numbers

    Chen, Wei | Wu, Kailiang | Xiong, Tao

    Journal of Scientific Computing, Vol. 99 (2024), Iss. 2

    https://doi.org/10.1007/s10915-024-02492-7 [Citations: 0]
  9. Energy-stable staggered schemes for the Shallow Water equations

    Duran, Arnaud | Vila, Jean-Paul | Baraille, Rémy

    Journal of Computational Physics, Vol. 401 (2020), Iss. P.109051

    https://doi.org/10.1016/j.jcp.2019.109051 [Citations: 8]
  10. Implicit-Explicit Bicompact Schemes for Hyperbolic Systems of Conservation Laws

    Bragin, M. D.

    Mathematical Models and Computer Simulations, Vol. 15 (2023), Iss. 1 P.1

    https://doi.org/10.1134/S2070048223010064 [Citations: 2]
  11. An asymptotic preserving semi-implicit multiderivative solver

    Schütz, Jochen | Seal, David C.

    Applied Numerical Mathematics, Vol. 160 (2021), Iss. P.84

    https://doi.org/10.1016/j.apnum.2020.09.004 [Citations: 10]
  12. Parallel-in-Time High-Order Multiderivative IMEX Solvers

    Schütz, Jochen | Seal, David C. | Zeifang, Jonas

    Journal of Scientific Computing, Vol. 90 (2022), Iss. 1

    https://doi.org/10.1007/s10915-021-01733-3 [Citations: 5]
  13. An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces

    Liu, Xin | Chertock, Alina | Kurganov, Alexander

    Journal of Computational Physics, Vol. 391 (2019), Iss. P.259

    https://doi.org/10.1016/j.jcp.2019.04.035 [Citations: 15]
  14. An Asymptotic Preserving and Energy Stable Scheme for the Barotropic Euler System in the Incompressible Limit

    Arun, K. R. | Ghorai, Rahuldev | Kar, Mainak

    Journal of Scientific Computing, Vol. 97 (2023), Iss. 3

    https://doi.org/10.1007/s10915-023-02389-x [Citations: 2]
  15. Asymptotic Preserving Low Mach Number Accurate IMEX Finite Volume Schemes for the Isentropic Euler Equations

    Arun, K. R. | Samantaray, S.

    Journal of Scientific Computing, Vol. 82 (2020), Iss. 2

    https://doi.org/10.1007/s10915-020-01138-8 [Citations: 10]
  16. High Order Asymptotic Preserving and Classical Semi-implicit RK Schemes for the Euler–Poisson System in the Quasineutral Limit

    Arun, K. R. | Crouseilles, N. | Samantaray, S.

    Journal of Scientific Computing, Vol. 100 (2024), Iss. 1

    https://doi.org/10.1007/s10915-024-02577-3 [Citations: 0]
  17. Efficient high-order discontinuous Galerkin computations of low Mach number flows

    Zeifang, Jonas | Kaiser, Klaus | Beck, Andrea | Schütz, Jochen | Munz, Claus-Dieter

    Communications in Applied Mathematics and Computational Science, Vol. 13 (2018), Iss. 2 P.243

    https://doi.org/10.2140/camcos.2018.13.243 [Citations: 11]
  18. High order well-balanced asymptotic preserving IMEX RKDG schemes for the two-dimensional nonlinear shallow water equations

    Xie, Xian | Dong, Haiyun | Li, Maojun

    Journal of Computational Physics, Vol. 510 (2024), Iss. P.113092

    https://doi.org/10.1016/j.jcp.2024.113092 [Citations: 0]
  19. A New Stable Splitting for the Isentropic Euler Equations

    Kaiser, Klaus | Schütz, Jochen | Schöbel, Ruth | Noelle, Sebastian

    Journal of Scientific Computing, Vol. 70 (2017), Iss. 3 P.1390

    https://doi.org/10.1007/s10915-016-0286-6 [Citations: 17]
  20. Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations

    Kučera, Václav | Lukáčová-Medvid’ová, Mária | Noelle, Sebastian | Schütz, Jochen

    Numerische Mathematik, Vol. 150 (2022), Iss. 1 P.79

    https://doi.org/10.1007/s00211-021-01240-5 [Citations: 3]
  21. Consistent section-averaged shallow water equations with bottom friction

    Michel-Dansac, Victor | Noble, Pascal | Vila, Jean-Paul

    European Journal of Mechanics - B/Fluids, Vol. 86 (2021), Iss. P.123

    https://doi.org/10.1016/j.euromechflu.2020.12.005 [Citations: 6]
  22. A Well-Balanced Asymptotic Preserving Scheme for the Two-Dimensional Rotating Shallow Water Equations with Nonflat Bottom Topography

    Kurganov, Alexander | Liu, Yongle | Lukáčová-Medviďová, Mária

    SIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 3 P.A1655

    https://doi.org/10.1137/21M141573X [Citations: 4]
  23. A Well-Balanced Asymptotic Preserving Scheme for the Two-Dimensional Shallow Water Equations Over Irregular Bottom Topography

    Liu, Xin

    SIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 5 P.B1136

    https://doi.org/10.1137/19M1262590 [Citations: 5]
  24. Implicit and implicit-explicit Lagrange-projection finite volume schemes exactly well-balanced for 1D shallow water system

    Caballero-Cárdenas, C. | Castro, M.J. | Morales de Luna, T. | Muñoz-Ruiz, M.L.

    Applied Mathematics and Computation, Vol. 443 (2023), Iss. P.127784

    https://doi.org/10.1016/j.amc.2022.127784 [Citations: 2]
  25. A Semi-Implicit Fully Exactly Well-Balanced Relaxation Scheme for the Shallow Water System

    Caballero-Cárdenas, Celia | Castro, Manuel Jesús | Chalons, Christophe | Morales de Luna, Tomás | Muñoz-Ruiz, María Luz

    SIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 4 P.A2503

    https://doi.org/10.1137/23M1621289 [Citations: 0]
  26. High order well-balanced asymptotic preserving finite difference WENO schemes for the shallow water equations in all Froude numbers

    Huang, Guanlan | Xing, Yulong | Xiong, Tao

    Journal of Computational Physics, Vol. 463 (2022), Iss. P.111255

    https://doi.org/10.1016/j.jcp.2022.111255 [Citations: 13]
  27. A staggered semi-implicit hybrid finite volume / finite element scheme for the shallow water equations at all Froude numbers

    Busto, S. | Dumbser, M.

    Applied Numerical Mathematics, Vol. 175 (2022), Iss. P.108

    https://doi.org/10.1016/j.apnum.2022.02.005 [Citations: 20]
  28. TVD-MOOD schemes based on implicit-explicit time integration

    Michel-Dansac, Victor | Thomann, Andrea

    Applied Mathematics and Computation, Vol. 433 (2022), Iss. P.127397

    https://doi.org/10.1016/j.amc.2022.127397 [Citations: 2]
  29. A unified asymptotic preserving and well-balanced scheme for the Euler system with multiscale relaxation

    Arun, K.R. | Krishnan, M. | Samantaray, S.

    Computers & Fluids, Vol. 233 (2022), Iss. P.105248

    https://doi.org/10.1016/j.compfluid.2021.105248 [Citations: 1]
  30. A Fully Well-Balanced Lagrange--Projection-Type Scheme for the Shallow-Water Equations

    Castro Díaz, Manuel J. | Chalons, Christophe | de Luna, Tomás Morales

    SIAM Journal on Numerical Analysis, Vol. 56 (2018), Iss. 5 P.3071

    https://doi.org/10.1137/17M1156101 [Citations: 13]
  31. Asymptotic analysis of the RS-IMEX scheme for the shallow water equations in one space dimension

    Zakerzadeh, Hamed

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 3 P.893

    https://doi.org/10.1051/m2an/2019005 [Citations: 2]
  32. A new stable splitting for singularly perturbed ODEs

    Schütz, Jochen | Kaiser, Klaus

    Applied Numerical Mathematics, Vol. 107 (2016), Iss. P.18

    https://doi.org/10.1016/j.apnum.2016.04.004 [Citations: 10]
  33. On the Construction of Conservative Semi-Lagrangian IMEX Advection Schemes for Multiscale Time Dependent PDEs

    Boscheri, Walter | Tavelli, Maurizio | Pareschi, Lorenzo

    Journal of Scientific Computing, Vol. 90 (2022), Iss. 3

    https://doi.org/10.1007/s10915-022-01768-0 [Citations: 3]
  34. A High-Order Method for Weakly Compressible Flows

    Kaiser, Klaus | Schütz, Jochen

    Communications in Computational Physics, Vol. 22 (2017), Iss. 4 P.1150

    https://doi.org/10.4208/cicp.OA-2017-0028 [Citations: 8]
  35. IMEX HDG-DG: A coupled implicit hybridized discontinuous Galerkin and explicit discontinuous Galerkin approach for shallow water systems

    Kang, Shinhoo | Giraldo, Francis X. | Bui-Thanh, Tan

    Journal of Computational Physics, Vol. 401 (2020), Iss. P.109010

    https://doi.org/10.1016/j.jcp.2019.109010 [Citations: 12]
  36. Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems

    The RS-IMEX Scheme for the Rotating Shallow Water Equations with the Coriolis Force

    Zakerzadeh, Hamed

    2017

    https://doi.org/10.1007/978-3-319-57394-6_22 [Citations: 2]