Journals
Resources
About Us
Open Access

Extension and Comparative Study of AUSM-Family Schemes for Compressible Multiphase Flow Simulations

Extension and Comparative Study of AUSM-Family Schemes for Compressible Multiphase Flow Simulations

Year:    2014

Communications in Computational Physics, Vol. 16 (2014), Iss. 3 : pp. 632–674

Abstract

Several recently developed AUSM-family numerical flux functions (SLAU, SLAU2, AUSM+-up2, and AUSMPW+) have been successfully extended to compute compressible multiphase flows, based on the stratified flow model concept, by following two previous works: one by M.-S. Liou, C.-H. Chang, L. Nguyen, and T.G. Theofanous [AIAA J. 46:2345-2356, 2008], in which AUSM+-up was used entirely, and the other by C.-H. Chang, and M.-S. Liou [J. Comput. Phys. 225:840-873, 2007], in which the exact Riemann solver was combined into AUSM+-up at the phase interface. Through an extensive survey by comparing flux functions, the following are found: (1) AUSM+-up with dissipation parameters of Kp and Ku equal to 0.5 or greater, AUSMPW+, SLAU2, AUSM+-up2, and SLAU can be used to solve benchmark problems, including a shock/water-droplet interaction; (2) SLAU shows oscillatory behaviors [though not as catastrophic as those of AUSM+ (a special case of AUSM+-up with Kp=Ku=0)] due to insufficient dissipation arising from its ideal-gas-based dissipation term; and (3) when combined with the exact Riemann solver, AUSM+-up (Kp=Ku=1), SLAU2, and AUSMPW+ are applicable to more challenging problems with high pressure ratios.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.020813.190214a

Communications in Computational Physics, Vol. 16 (2014), Iss. 3 : pp. 632–674

Published online:    2014-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    43

Keywords:   

  1. Quasi-gasodynamic heterogeneous model for describing a mixture of compressible fluids. One-dimensional case

    Khaytaliev, Ismatolo Ramazanovich | Shilnikov, Evgeny Vladimirovich | Elizarova, Tatiana Gennadyevna

    Keldysh Institute Preprints, Vol. (2023), Iss. 74 P.1

    https://doi.org/10.20948/prepr-2023-74 [Citations: 0]
  2. On a doubly reduced model for dynamics of heterogeneous mixtures of stiffened gases, its regularizations and their implementations

    Zlotnik, A. | Lomonosov, T.

    Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 33 (2023), Iss. 11

    https://doi.org/10.1063/5.0159201 [Citations: 3]
  3. An enhanced AUSM $$^{+}$$ + -up scheme for high-speed compressible two-phase flows on hybrid grids

    Pandare, A. K. | Luo, H. | Bakosi, J.

    Shock Waves, Vol. 29 (2019), Iss. 5 P.629

    https://doi.org/10.1007/s00193-018-0861-x [Citations: 14]
  4. An appropriate numerical dissipation for SLAU2 towards shock-stable compressible multiphase flow simulations

    Aono, Junya | Kitamura, Keiichi

    Journal of Computational Physics, Vol. 462 (2022), Iss. P.111256

    https://doi.org/10.1016/j.jcp.2022.111256 [Citations: 1]
  5. Reduced dissipation AUSM-family fluxes: HR-SLAU2 and HR-AUSM+-up for high resolution unsteady flow simulations

    Kitamura, Keiichi | Hashimoto, Atsushi

    Computers & Fluids, Vol. 126 (2016), Iss. P.41

    https://doi.org/10.1016/j.compfluid.2015.11.014 [Citations: 60]
  6. Simulation of liquid jet primary breakup in a supersonic crossflow under Adaptive Mesh Refinement framework

    Liu, Nan | Wang, Zhenguo | Sun, Mingbo | Deiterding, Ralf | Wang, Hongbo

    Aerospace Science and Technology, Vol. 91 (2019), Iss. P.456

    https://doi.org/10.1016/j.ast.2019.05.017 [Citations: 36]
  7. Quasi-Gasdynamic Model and Numerical Algorithm for Describing Mixtures of Different Fluids

    Elizarova, T. G. | Shil’nikov, E. V.

    Computational Mathematics and Mathematical Physics, Vol. 63 (2023), Iss. 7 P.1319

    https://doi.org/10.1134/S0965542523070059 [Citations: 4]
  8. A robust high-resolution discrete-equations method for compressible multi-phase flow with accurate interface capturing

    Paula, Thomas | Adami, Stefan | Adams, Nikolaus A.

    Journal of Computational Physics, Vol. 491 (2023), Iss. P.112371

    https://doi.org/10.1016/j.jcp.2023.112371 [Citations: 7]
  9. Comparative Study of Numerical Schemes for Granular Combustion of Boron Potassium Nitrate

    Elizabeth, Annie Rose | Sarma, Sumit | Jayachandran, T. | Ramakrishna, P. A. | Borthakur, Mondeep

    Aerospace, Vol. 11 (2024), Iss. 4 P.251

    https://doi.org/10.3390/aerospace11040251 [Citations: 0]
  10. Methods for compressible multiphase flows and their applications

    Kim, H. | Choe, Y. | Kim, H. | Min, D. | Kim, C.

    Shock Waves, Vol. 29 (2019), Iss. 1 P.235

    https://doi.org/10.1007/s00193-018-0829-x [Citations: 20]
  11. Computations of Homogeneous Multiphase Real Fluid Flows at All Speeds

    Kim, Hyeongjun | Kim, Hyunji | Kim, Chongam

    AIAA Journal, Vol. 56 (2018), Iss. 7 P.2623

    https://doi.org/10.2514/1.J056497 [Citations: 19]
  12. Numerical simulation of liquid droplet breakup in supersonic flows

    Liu, Nan | Wang, Zhenguo | Sun, Mingbo | Wang, Hongbo | Wang, Bing

    Acta Astronautica, Vol. 145 (2018), Iss. P.116

    https://doi.org/10.1016/j.actaastro.2018.01.010 [Citations: 46]
  13. An Implicit Finite-Volume Method for Compressible Turbulent Multiphase Flows on Unstructured Grids

    Pandare, Aditya | Luo, Hong

    2018 Fluid Dynamics Conference, (2018),

    https://doi.org/10.2514/6.2018-3716 [Citations: 2]
  14. Pressure-Equation-Based SLAU2 for Oscillation-Free Supercritical Flow Computations

    Kitamura, Keiichi | Shima, Eiji

    23rd AIAA Computational Fluid Dynamics Conference, (2017),

    https://doi.org/10.2514/6.2017-4109 [Citations: 1]
  15. Development of parameter-free, two-fluid, viscous multiphase flow solver for cough-droplet simulations

    AONO, Junya | KITAMURA, Keiichi

    Journal of Fluid Science and Technology, Vol. 18 (2023), Iss. 1 P.JFST0016

    https://doi.org/10.1299/jfst.2023jfst0016 [Citations: 0]
  16. Efficient solution of bimaterial Riemann problems for compressible multi-material flow simulations

    Ma, Wentao | Zhao, Xuning | Islam, Shafquat | Narkhede, Aditya | Wang, Kevin

    Journal of Computational Physics, Vol. 493 (2023), Iss. P.112474

    https://doi.org/10.1016/j.jcp.2023.112474 [Citations: 2]
  17. Fluid Mechanics and Fluid Power, Volume 2

    Numerical Simulation of Compressible Multiphase Flows with Phase Change Using Two-Fluid Approach

    Navaneethan, Mansu | Sundararajan, T. | Jayachandran, T.

    2024

    https://doi.org/10.1007/978-981-99-5752-1_76 [Citations: 0]
  18. A high-order accurate AUSM$$^+$$-up approach for simulations of compressible multiphase flows with linear viscoelasticity

    Rodriguez, M. | Johnsen, E. | Powell, K. G.

    Shock Waves, Vol. 29 (2019), Iss. 5 P.717

    https://doi.org/10.1007/s00193-018-0884-3 [Citations: 4]
  19. Methods for Accurate Computations of Homogeneous Multi-phase Real Fluid Flows at All Speeds

    Kim, Hyeongjun | Kim, Hyunji | Choe, Yohan | Kim, Chongam

    23rd AIAA Computational Fluid Dynamics Conference, (2017),

    https://doi.org/10.2514/6.2017-4288 [Citations: 3]
  20. Numerical investigation on the effect of solid particle size and concentration in a polydisperse gas-solid multiphase flows

    Talukdar, Deboprasad | Suzuki, Yujiro

    Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference December 14-17, 2023, IIT Patna, Patna-801106, Bihar, India, (2024), P.937

    https://doi.org/10.1615/IHMTC-2023.1520 [Citations: 0]
  21. Improved hybrid approach of monotonic upstream-centered scheme for conservation laws and discontinuity sharpening technique for steady and unsteady flows

    Fukushima, Gaku | Kitamura, Keiichi

    Physics of Fluids, Vol. 36 (2024), Iss. 4

    https://doi.org/10.1063/5.0198163 [Citations: 2]
  22. Taming the “stiff stiffness” of pressure work and equilibration in numerical schemes for compressible multi-fluid flows

    Heulhard de Montigny, Éric | Llor, Antoine

    International Journal of Multiphase Flow, Vol. 153 (2022), Iss. P.104078

    https://doi.org/10.1016/j.ijmultiphaseflow.2022.104078 [Citations: 4]
  23. Assessment of SLAU2 and other flux functions with slope limiters in hypersonic shock-interaction heating

    Kitamura, Keiichi

    Computers & Fluids, Vol. 129 (2016), Iss. P.134

    https://doi.org/10.1016/j.compfluid.2016.02.006 [Citations: 23]
  24. Advancement of Shock Capturing Computational Fluid Dynamics Methods

    Numerical Flux Functions Extended to Real Fluids

    Kitamura, Keiichi

    2020

    https://doi.org/10.1007/978-981-15-9011-5_4 [Citations: 0]
  25. Assessment of spurious numerical oscillations in high-order spectral difference solvers for supercritical flows

    Migliorino, Mario Tindaro | Chapelier, Jean-Baptiste | Scalo, Carlo | Lodato, Guido

    2018 Fluid Dynamics Conference, (2018),

    https://doi.org/10.2514/6.2018-4273 [Citations: 1]
  26. Quasi-Gasdynamic Model and Numerical Algorithm for Describing Mixtures of Different Fluids

    Elizarova, T. G. | Shil’nikov, E. V.

    Журнал вычислительной математики и математической физики, Vol. 63 (2023), Iss. 7 P.1193

    https://doi.org/10.31857/S0044466923070050 [Citations: 0]
  27. Pressure-equation-based SLAU2 for oscillation-free, supercritical flow simulations

    Kitamura, Keiichi | Shima, Eiji

    Computers & Fluids, Vol. 163 (2018), Iss. P.86

    https://doi.org/10.1016/j.compfluid.2018.01.001 [Citations: 8]
  28. A robust and efficient finite volume method for compressible inviscid and viscous two-phase flows

    Pandare, Aditya K. | Luo, Hong

    Journal of Computational Physics, Vol. 371 (2018), Iss. P.67

    https://doi.org/10.1016/j.jcp.2018.05.018 [Citations: 29]
  29. Numerical investigation of multiphase feature in a polydisperse gas-solid flow: Effect of particle size, volume fraction and shape

    Talukdar, Deboprasad | Suzuki, Yujiro

    International Communications in Heat and Mass Transfer, Vol. 159 (2024), Iss. P.108151

    https://doi.org/10.1016/j.icheatmasstransfer.2024.108151 [Citations: 0]
  30. A Finite-Volume Method for Compressible Viscous Multiphase Flows

    Pandare, Aditya | Luo, Hong

    2018 AIAA Aerospace Sciences Meeting, (2018),

    https://doi.org/10.2514/6.2018-1814 [Citations: 2]
  31. Assessment of WENO-extended two-fluid modelling in compressible multiphase flows

    Kitamura, Keiichi | Nonomura, Taku

    International Journal of Computational Fluid Dynamics, Vol. 31 (2017), Iss. 3 P.188

    https://doi.org/10.1080/10618562.2017.1311410 [Citations: 3]
  32. Accurate hybrid AUSMD type flux algorithm with generalized discontinuity sharpening reconstruction for two-fluid modeling

    Chiu, Te-Yao | Niu, Yang-Yao | Chou, Yi-Ju

    Journal of Computational Physics, Vol. 443 (2021), Iss. P.110540

    https://doi.org/10.1016/j.jcp.2021.110540 [Citations: 2]