A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws

A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws

Year:    2014

Communications in Computational Physics, Vol. 16 (2014), Iss. 3 : pp. 718–763

Abstract

In this paper, we investigate the coupling of the Multi-dimensional Optimal Order Detection (MOOD) method and the Arbitrary high order DERivatives (ADER) approach in order to design a new high order accurate, robust and computationally efficient Finite Volume (FV) scheme dedicated to solving nonlinear systems of hyperbolic conservation laws on unstructured triangular and tetrahedral meshes in two and three space dimensions, respectively. The Multi-dimensional Optimal Order Detection (MOOD) method for 2D and 3D geometries has been introduced in a recent series of papers for mixed unstructured meshes. It is an arbitrary high-order accurate Finite Volume scheme in space, using polynomial reconstructions with a posteriori detection and polynomial degree decrementing processes to deal with shock waves and other discontinuities. In the following work, the time discretization is performed with an elegant and efficient one-step ADER procedure. Doing so, we retain the good properties of the MOOD scheme, that is to say, the optimal high-order of accuracy is reached on smooth solutions, while spurious oscillations near singularities are prevented. The ADER technique not only reduces the cost of the overall scheme as shown on a set of numerical tests in 2D and 3D, but also increases the stability of the overall scheme. A systematic comparison between classical unstructured ADER-WENO schemes and the new ADER-MOOD approach has been carried out for high-order schemes in space and time in terms of cost, robustness, accuracy and efficiency. The main finding of this paper is that the combination of ADER with MOOD generally outperforms the one of ADER and WENO either because at given accuracy MOOD is less expensive (memory and/or CPU time), or because it is more accurate for a given grid resolution. A large suite of classical numerical test problems has been solved on unstructured meshes for three challenging multi-dimensional systems of conservation laws: the Euler equations of compressible gas dynamics, the classical equations of ideal magneto-Hydrodynamics (MHD) and finally the relativistic MHD equations (RMHD), which constitutes a particularly challenging nonlinear system of hyperbolic partial differential equation. All tests are run on genuinely unstructured grids composed of simplex elements.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.181113.140314a

Communications in Computational Physics, Vol. 16 (2014), Iss. 3 : pp. 718–763

Published online:    2014-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    46

Keywords:   

  1. A MOOD-MUSCL Hybrid Formulation for the Non-conservative Shallow-Water System

    Figueiredo, J. | Clain, S.

    Journal of Scientific Computing, Vol. 88 (2021), Iss. 1

    https://doi.org/10.1007/s10915-021-01513-z [Citations: 2]
  2. Suppressing Numerical Oscillation for Nonlinear Hyperbolic Equations by Wavelet Analysis

    Zhao, Yong | Yu, Peng-Yao | Su, Shao-Juan | Wang, Tian-Lin

    Mathematical Problems in Engineering, Vol. 2018 (2018), Iss. P.1

    https://doi.org/10.1155/2018/4859469 [Citations: 0]
  3. Shifted boundary polynomial corrections for compressible flows: high order on curved domains using linear meshes

    Ciallella, Mirco | Gaburro, Elena | Lorini, Marco | Ricchiuto, Mario

    Applied Mathematics and Computation, Vol. 441 (2023), Iss. P.127698

    https://doi.org/10.1016/j.amc.2022.127698 [Citations: 1]
  4. Designing Several Types of Oscillation-Less and High-Resolution Hybrid Schemes on Block-Structured Grids

    Jiang, Zhenhua | Yan, Chao | Yu, Jian | Lin, Boxi

    Communications in Computational Physics, Vol. 21 (2017), Iss. 5 P.1376

    https://doi.org/10.4208/cicp.OA-2015-0028 [Citations: 2]
  5. An efficient high order direct ALE ADER finite volume scheme with a posteriori limiting for hydrodynamics and magnetohydrodynamics

    Boscheri, Walter

    International Journal for Numerical Methods in Fluids, Vol. 84 (2017), Iss. 2 P.76

    https://doi.org/10.1002/fld.4342 [Citations: 7]
  6. Efficient Implementation of ADER Discontinuous Galerkin Schemes for a Scalable Hyperbolic PDE Engine

    Dumbser, Michael | Fambri, Francesco | Tavelli, Maurizio | Bader, Michael | Weinzierl, Tobias

    Axioms, Vol. 7 (2018), Iss. 3 P.63

    https://doi.org/10.3390/axioms7030063 [Citations: 41]
  7. An admissibility and asymptotic preserving scheme for systems of conservation laws with source term on 2D unstructured meshes with high-order MOOD reconstruction

    Blachère, F. | Turpault, R.

    Computer Methods in Applied Mechanics and Engineering, Vol. 317 (2017), Iss. P.836

    https://doi.org/10.1016/j.cma.2017.01.012 [Citations: 12]
  8. High order direct Arbitrary-Lagrangian-Eulerian (ALE) PP schemes with WENO Adaptive-Order reconstruction on unstructured meshes

    Boscheri, Walter | Balsara, Dinshaw S.

    Journal of Computational Physics, Vol. 398 (2019), Iss. P.108899

    https://doi.org/10.1016/j.jcp.2019.108899 [Citations: 24]
  9. ExaHyPE: An engine for parallel dynamically adaptive simulations of wave problems

    Reinarz, Anne | Charrier, Dominic E. | Bader, Michael | Bovard, Luke | Dumbser, Michael | Duru, Kenneth | Fambri, Francesco | Gabriel, Alice-Agnes | Gallard, Jean-Matthieu | Köppel, Sven | Krenz, Lukas | Rannabauer, Leonhard | Rezzolla, Luciano | Samfass, Philipp | Tavelli, Maurizio | Weinzierl, Tobias

    Computer Physics Communications, Vol. 254 (2020), Iss. P.107251

    https://doi.org/10.1016/j.cpc.2020.107251 [Citations: 49]
  10. Space–time adaptive ADER-DG schemes for dissipative flows: Compressible Navier–Stokes and resistive MHD equations

    Fambri, Francesco | Dumbser, Michael | Zanotti, Olindo

    Computer Physics Communications, Vol. 220 (2017), Iss. P.297

    https://doi.org/10.1016/j.cpc.2017.08.001 [Citations: 48]
  11. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables

    Zanotti, Olindo | Dumbser, Michael

    Computational Astrophysics and Cosmology, Vol. 3 (2016), Iss. 1

    https://doi.org/10.1186/s40668-015-0014-x [Citations: 35]
  12. Three dimensional HLL Riemann solver for conservation laws on structured meshes; Application to Euler and magnetohydrodynamic flows

    Balsara, Dinshaw S.

    Journal of Computational Physics, Vol. 295 (2015), Iss. P.1

    https://doi.org/10.1016/j.jcp.2015.03.056 [Citations: 50]
  13. Positivity preserving and entropy consistent approximate Riemann solvers dedicated to the high-order MOOD-based Finite Volume discretization of Lagrangian and Eulerian gas dynamics

    Chan, Agnes | Gallice, Gérard | Loubère, Raphaël | Maire, Pierre-Henri

    Computers & Fluids, Vol. 229 (2021), Iss. P.105056

    https://doi.org/10.1016/j.compfluid.2021.105056 [Citations: 14]
  14. A staggered semi-implicit hybrid FV/FE projection method for weakly compressible flows

    Bermúdez, A. | Busto, S. | Dumbser, M. | Ferrín, J.L. | Saavedra, L. | Vázquez-Cendón, M.E.

    Journal of Computational Physics, Vol. 421 (2020), Iss. P.109743

    https://doi.org/10.1016/j.jcp.2020.109743 [Citations: 42]
  15. A hybrid a posteriori MOOD limited lattice Boltzmann method to solve compressible fluid flows – LBMOOD

    Kozhanova, Ksenia | Zhao, Song | Loubère, Raphaël | Boivin, Pierre

    Journal of Computational Physics, Vol. 521 (2025), Iss. P.113570

    https://doi.org/10.1016/j.jcp.2024.113570 [Citations: 0]
  16. Very high order treatment of embedded curved boundaries in compressible flows: ADER discontinuous Galerkin with a space-time Reconstruction for Off-site data

    Ciallella, Mirco | Clain, Stephane | Gaburro, Elena | Ricchiuto, Mario

    Computers & Mathematics with Applications, Vol. 175 (2024), Iss. P.1

    https://doi.org/10.1016/j.camwa.2024.08.028 [Citations: 0]
  17. An efficient hyperbolic relaxation system for dispersive non-hydrostatic water waves and its solution with high order discontinuous Galerkin schemes

    Escalante, C. | Dumbser, M. | Castro, M.J.

    Journal of Computational Physics, Vol. 394 (2019), Iss. P.385

    https://doi.org/10.1016/j.jcp.2019.05.035 [Citations: 32]
  18. WENO schemes on unstructured meshes using a relaxed a posteriori MOOD limiting approach

    Farmakis, Pericles S. | Tsoutsanis, Panagiotis | Nogueira, Xesús

    Computer Methods in Applied Mechanics and Engineering, Vol. 363 (2020), Iss. P.112921

    https://doi.org/10.1016/j.cma.2020.112921 [Citations: 29]
  19. Adaptive-Mesh-Refinement for hyperbolic systems of conservation laws based on a posteriori stabilized high order polynomial reconstructions

    Semplice, Matteo | Loubère, Raphaël

    Journal of Computational Physics, Vol. 354 (2018), Iss. P.86

    https://doi.org/10.1016/j.jcp.2017.10.031 [Citations: 8]
  20. A geometrically intrinsic lagrangian-Eulerian scheme for 2D shallow water equations with variable topography and discontinuous data

    Abreu, Eduardo | Bachini, Elena | Pérez, John | Putti, Mario

    Applied Mathematics and Computation, Vol. 443 (2023), Iss. P.127776

    https://doi.org/10.1016/j.amc.2022.127776 [Citations: 1]
  21. A posteriori limiting for 2D Lagrange plus Remap schemes solving the hydrodynamics system of equations

    Braeunig, Jean-Philippe | Loubère, Raphaël | Motte, Renaud | Peybernes, Mathieu | Poncet, Raphaël

    Computers & Fluids, Vol. 169 (2018), Iss. P.249

    https://doi.org/10.1016/j.compfluid.2017.08.020 [Citations: 2]
  22. Hybrid finite volume weighted essentially non-oscillatory schemes with linear central reconstructions

    Wang, Xiufang | Yu, Haiyan | Li, Gang | Gao, Jinmei

    Applied Mathematics and Computation, Vol. 359 (2019), Iss. P.132

    https://doi.org/10.1016/j.amc.2019.04.025 [Citations: 1]
  23. A pressure-based semi-implicit space–time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier–Stokes equations at all Mach numbers

    Tavelli, Maurizio | Dumbser, Michael

    Journal of Computational Physics, Vol. 341 (2017), Iss. P.341

    https://doi.org/10.1016/j.jcp.2017.03.030 [Citations: 91]
  24. High-accurate SPH method with Multidimensional Optimal Order Detection limiting

    Nogueira, Xesús | Ramírez, Luis | Clain, Stéphane | Loubère, Raphaël | Cueto-Felgueroso, Luis | Colominas, Ignasi

    Computer Methods in Applied Mechanics and Engineering, Vol. 310 (2016), Iss. P.134

    https://doi.org/10.1016/j.cma.2016.06.032 [Citations: 35]
  25. A posteriori sub-cell finite volume limiting of staggered semi-implicit discontinuous Galerkin schemes for the shallow water equations

    Ioriatti, Matteo | Dumbser, Michael

    Applied Numerical Mathematics, Vol. 135 (2019), Iss. P.443

    https://doi.org/10.1016/j.apnum.2018.08.018 [Citations: 17]
  26. Comparison between a priori and a posteriori slope limiters for high-order finite volume schemes

    Palafoutas, Jonathan | Velasco Romero, David A. | Teyssier, Romain

    Journal of Computational Physics, Vol. (2024), Iss. P.113571

    https://doi.org/10.1016/j.jcp.2024.113571 [Citations: 0]
  27. Space–time adaptive ADER-DG finite element method with LST-DG predictor and a posteriori sub-cell ADER-WENO finite-volume limiting for multidimensional detonation waves simulation

    Popov, I.S.

    Computers & Fluids, Vol. 284 (2024), Iss. P.106425

    https://doi.org/10.1016/j.compfluid.2024.106425 [Citations: 0]
  28. Limiting and divergence cleaning for continuous finite element discretizations of the MHD equations

    Kuzmin, Dmitri | Klyushnev, Nikita

    Journal of Computational Physics, Vol. 407 (2020), Iss. P.109230

    https://doi.org/10.1016/j.jcp.2020.109230 [Citations: 12]
  29. Direct Arbitrary-Lagrangian–Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws

    Boscheri, Walter | Loubère, Raphaël | Dumbser, Michael

    Journal of Computational Physics, Vol. 292 (2015), Iss. P.56

    https://doi.org/10.1016/j.jcp.2015.03.015 [Citations: 55]
  30. Advances in Numerical Methods for Hyperbolic Balance Laws and Related Problems

    A Conservative a-Posteriori Time-Limiting Procedure in Quinpi Schemes

    Visconti, Giuseppe | Tozza, Silvia | Semplice, Matteo | Puppo, Gabriella

    2023

    https://doi.org/10.1007/978-3-031-29875-2_9 [Citations: 0]
  31. Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows

    Saurel, Richard | Pantano, Carlos

    Annual Review of Fluid Mechanics, Vol. 50 (2018), Iss. 1 P.105

    https://doi.org/10.1146/annurev-fluid-122316-050109 [Citations: 119]
  32. Advances in Numerical Methods for Hyperbolic Balance Laws and Related Problems

    High-Order Arbitrary-Lagrangian-Eulerian Schemes on Crazy Moving Voronoi Meshes

    Gaburro, Elena | Chiocchetti, Simone

    2023

    https://doi.org/10.1007/978-3-031-29875-2_5 [Citations: 0]
  33. High order accurate conservative remapping scheme on polygonal meshes using a posteriori MOOD limiting

    Blanchard, Ghislain | Loubère, Raphaël

    Computers & Fluids, Vol. 136 (2016), Iss. P.83

    https://doi.org/10.1016/j.compfluid.2016.06.002 [Citations: 21]
  34. Sharpening diffuse interfaces with compressible fluids on unstructured meshes

    Chiapolino, Alexandre | Saurel, Richard | Nkonga, Boniface

    Journal of Computational Physics, Vol. 340 (2017), Iss. P.389

    https://doi.org/10.1016/j.jcp.2017.03.042 [Citations: 63]
  35. Efficient ROUND schemes on non-uniform grids applied to discontinuous Galerkin schemes with Godunov-type finite volume sub-cell limiting

    Deng, Xi | Jiang, Zhen-hua | Yan, Chao

    Journal of Computational Physics, Vol. 522 (2025), Iss. P.113575

    https://doi.org/10.1016/j.jcp.2024.113575 [Citations: 0]
  36. Efficient methods with higher order interpolation and MOOD strategy for compressible turbulence simulations

    Jiang, Zhen-Hua | Yan, Chao | Yu, Jian

    Journal of Computational Physics, Vol. 371 (2018), Iss. P.528

    https://doi.org/10.1016/j.jcp.2018.06.018 [Citations: 18]
  37. High order ADER schemes and GLM curl cleaning for a first order hyperbolic formulation of compressible flow with surface tension

    Chiocchetti, Simone | Peshkov, Ilya | Gavrilyuk, Sergey | Dumbser, Michael

    Journal of Computational Physics, Vol. 426 (2021), Iss. P.109898

    https://doi.org/10.1016/j.jcp.2020.109898 [Citations: 27]
  38. Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement

    Zanotti, O. | Fambri, F. | Dumbser, M.

    Monthly Notices of the Royal Astronomical Society, Vol. 452 (2015), Iss. 3 P.3010

    https://doi.org/10.1093/mnras/stv1510 [Citations: 70]
  39. High Order ADER Schemes for Continuum Mechanics

    Busto, Saray | Chiocchetti, Simone | Dumbser, Michael | Gaburro, Elena | Peshkov, Ilya

    Frontiers in Physics, Vol. 8 (2020), Iss.

    https://doi.org/10.3389/fphy.2020.00032 [Citations: 54]
  40. High Order Accurate Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD Finite Volume Schemes for Non-Conservative Hyperbolic Systems with Stiff Source Terms

    Boscheri, Walter | Loubère, Raphaël

    Communications in Computational Physics, Vol. 21 (2017), Iss. 1 P.271

    https://doi.org/10.4208/cicp.OA-2015-0024 [Citations: 18]
  41. A high-order diffuse-interface method with TENO-THINC scheme for compressible multiphase flows

    Li, Qichao | Lv, Yu | Fu, Lin

    International Journal of Multiphase Flow, Vol. 173 (2024), Iss. P.104732

    https://doi.org/10.1016/j.ijmultiphaseflow.2024.104732 [Citations: 3]
  42. Runge–Kutta discontinuous Galerkin methods for the special relativistic magnetohydrodynamics

    Zhao, Jian | Tang, Huazhong

    Journal of Computational Physics, Vol. 343 (2017), Iss. P.33

    https://doi.org/10.1016/j.jcp.2017.04.027 [Citations: 21]
  43. A filtering monotonization approach for DG discretizations of hyperbolic problems

    Orlando, Giuseppe

    Computers & Mathematics with Applications, Vol. 129 (2023), Iss. P.113

    https://doi.org/10.1016/j.camwa.2022.11.017 [Citations: 3]
  44. A Priori Neural Networks Versus A Posteriori MOOD Loop: A High Accurate 1D FV Scheme Testing Bed

    Bourriaud, Alexandre | Loubère, Raphaël | Turpault, Rodolphe

    Journal of Scientific Computing, Vol. 84 (2020), Iss. 2

    https://doi.org/10.1007/s10915-020-01282-1 [Citations: 5]
  45. An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows

    Pantano, C. | Saurel, R. | Schmitt, T.

    Journal of Computational Physics, Vol. 335 (2017), Iss. P.780

    https://doi.org/10.1016/j.jcp.2017.01.057 [Citations: 24]
  46. Space-time adaptive ADER discontinuous Galerkin schemes for nonlinear hyperelasticity with material failure

    Tavelli, Maurizio | Chiocchetti, Simone | Romenski, Evgeniy | Gabriel, Alice-Agnes | Dumbser, Michael

    Journal of Computational Physics, Vol. 422 (2020), Iss. P.109758

    https://doi.org/10.1016/j.jcp.2020.109758 [Citations: 21]
  47. A strategy to implement Dirichlet boundary conditions in the context of ADER finite volume schemes. One-dimensional conservation laws

    Montecinos, Gino I.

    Computers & Fluids, Vol. 140 (2016), Iss. P.357

    https://doi.org/10.1016/j.compfluid.2016.10.016 [Citations: 0]
  48. A Posteriori Subcell Finite Volume Limiter for General $$P_NP_M$$ Schemes: Applications from Gasdynamics to Relativistic Magnetohydrodynamics

    Gaburro, Elena | Dumbser, Michael

    Journal of Scientific Computing, Vol. 86 (2021), Iss. 3

    https://doi.org/10.1007/s10915-020-01405-8 [Citations: 19]
  49. A Unified Framework for the Solution of Hyperbolic PDE Systems Using High Order Direct Arbitrary-Lagrangian–Eulerian Schemes on Moving Unstructured Meshes with Topology Change

    Gaburro, Elena

    Archives of Computational Methods in Engineering, Vol. 28 (2021), Iss. 3 P.1249

    https://doi.org/10.1007/s11831-020-09411-7 [Citations: 21]
  50. The MOOD method for the non-conservative shallow-water system

    Clain, S. | Figueiredo, J.

    Computers & Fluids, Vol. 145 (2017), Iss. P.99

    https://doi.org/10.1016/j.compfluid.2016.11.013 [Citations: 16]
  51. Advancement of Shock Capturing Computational Fluid Dynamics Methods

    Reconstruction and Slope Limiters

    Kitamura, Keiichi

    2020

    https://doi.org/10.1007/978-981-15-9011-5_5 [Citations: 0]
  52. An Efficient Quadrature-Free Formulation for High Order Arbitrary-Lagrangian–Eulerian ADER-WENO Finite Volume Schemes on Unstructured Meshes

    Boscheri, W. | Dumbser, M.

    Journal of Scientific Computing, Vol. 66 (2016), Iss. 1 P.240

    https://doi.org/10.1007/s10915-015-0019-2 [Citations: 15]
  53. Extensions and investigations of space‐time generalized Riemann problems numerical schemes for linear systems of conservation laws with source terms

    Turpault, Rodolphe

    Numerical Methods for Partial Differential Equations, Vol. 40 (2024), Iss. 6

    https://doi.org/10.1002/num.23118 [Citations: 0]
  54. Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity

    Peshkov, Ilya | Boscheri, Walter | Loubère, Raphaël | Romenski, Evgeniy | Dumbser, Michael

    Journal of Computational Physics, Vol. 387 (2019), Iss. P.481

    https://doi.org/10.1016/j.jcp.2019.02.039 [Citations: 37]
  55. A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws

    Dumbser, Michael | Zanotti, Olindo | Loubère, Raphaël | Diot, Steven

    Journal of Computational Physics, Vol. 278 (2014), Iss. P.47

    https://doi.org/10.1016/j.jcp.2014.08.009 [Citations: 258]
  56. Cell centered direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity

    Boscheri, Walter | Dumbser, Michael | Loubère, Raphaël

    Computers & Fluids, Vol. 134-135 (2016), Iss. P.111

    https://doi.org/10.1016/j.compfluid.2016.05.004 [Citations: 32]
  57. A single-step third-order temporal discretization with Jacobian-free and Hessian-free formulations for finite difference methods

    Lee, Youngjun | Lee, Dongwook

    Journal of Computational Physics, Vol. 427 (2021), Iss. P.110063

    https://doi.org/10.1016/j.jcp.2020.110063 [Citations: 4]
  58. High Order Direct Arbitrary-Lagrangian–Eulerian (ALE) Finite Volume Schemes for Hyperbolic Systems on Unstructured Meshes

    Boscheri, Walter

    Archives of Computational Methods in Engineering, Vol. 24 (2017), Iss. 4 P.751

    https://doi.org/10.1007/s11831-016-9188-x [Citations: 15]
  59. High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids

    Dumbser, Michael | Peshkov, Ilya | Romenski, Evgeniy | Zanotti, Olindo

    Journal of Computational Physics, Vol. 314 (2016), Iss. P.824

    https://doi.org/10.1016/j.jcp.2016.02.015 [Citations: 138]
  60. Implicit, semi-analytical solution of the generalized Riemann problem for stiff hyperbolic balance laws

    Toro, Eleuterio F. | Montecinos, Gino I.

    Journal of Computational Physics, Vol. 303 (2015), Iss. P.146

    https://doi.org/10.1016/j.jcp.2015.09.039 [Citations: 25]
  61. Hybrid central-upwind finite volume schemes for solving the Euler and Navier–Stokes equations

    Jiang, Zhen-Hua | Yan, Chao | Yu, Jian | Li, Yansu

    Computers & Mathematics with Applications, Vol. 72 (2016), Iss. 9 P.2241

    https://doi.org/10.1016/j.camwa.2016.08.022 [Citations: 5]
  62. An ADER-type scheme for a class of equations arising from the water-wave theory

    Montecinos, G.I. | López-Rios, J.C. | Lecaros, R. | Ortega, J.H. | Toro, E.F.

    Computers & Fluids, Vol. 132 (2016), Iss. P.76

    https://doi.org/10.1016/j.compfluid.2016.04.012 [Citations: 5]
  63. A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics

    Boscheri, Walter | Dumbser, Michael | Loubère, Raphaël | Maire, Pierre-Henri

    Journal of Computational Physics, Vol. 358 (2018), Iss. P.103

    https://doi.org/10.1016/j.jcp.2017.12.040 [Citations: 23]
  64. a posteriori stabilized sixth-order finite volume scheme for one-dimensional steady-state hyperbolic equations

    Clain, Stéphane | Loubère, Raphaël | Machado, Gaspar J.

    Advances in Computational Mathematics, Vol. 44 (2018), Iss. 2 P.571

    https://doi.org/10.1007/s10444-017-9556-6 [Citations: 7]
  65. A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes

    Dumbser, Michael | Loubère, Raphaël

    Journal of Computational Physics, Vol. 319 (2016), Iss. P.163

    https://doi.org/10.1016/j.jcp.2016.05.002 [Citations: 100]
  66. Direct Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes

    Gaburro, Elena | Dumbser, Michael | Castro, Manuel J.

    Computers & Fluids, Vol. 159 (2017), Iss. P.254

    https://doi.org/10.1016/j.compfluid.2017.09.022 [Citations: 33]
  67. Advanced Topics in Nonsmooth Dynamics

    Nonsmooth Modal Analysis: From the Discrete to the Continuous Settings

    Thorin, Anders | Legrand, Mathias

    2018

    https://doi.org/10.1007/978-3-319-75972-2_5 [Citations: 3]
  68. A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer–Nunziato model

    Kemm, Friedemann | Gaburro, Elena | Thein, Ferdinand | Dumbser, Michael

    Computers & Fluids, Vol. 204 (2020), Iss. P.104536

    https://doi.org/10.1016/j.compfluid.2020.104536 [Citations: 36]
  69. Simple a posteriori slope limiter (Post Limiter) for high resolution and efficient flow computations

    Kitamura, Keiichi | Hashimoto, Atsushi

    Journal of Computational Physics, Vol. 341 (2017), Iss. P.313

    https://doi.org/10.1016/j.jcp.2017.04.002 [Citations: 11]
  70. A higher‐order unsplit 2D direct Eulerian finite volume method for two‐material compressible flows based on the MOOD paradigms

    Diot, S. | François, M. M. | Dendy, E. D.

    International Journal for Numerical Methods in Fluids, Vol. 76 (2014), Iss. 12 P.1064

    https://doi.org/10.1002/fld.3966 [Citations: 2]
  71. Solution property preserving reconstruction for finite volume scheme: a boundary variation diminishing+multidimensional optimal order detection framework

    Tann, Siengdy | Deng, Xi | Shimizu, Yuya | Loubère, Raphaël | Xiao, Feng

    International Journal for Numerical Methods in Fluids, Vol. 92 (2020), Iss. 6 P.603

    https://doi.org/10.1002/fld.4798 [Citations: 11]
  72. High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes

    Boscheri, Walter | Dumbser, Michael | Zanotti, Olindo

    Journal of Computational Physics, Vol. 291 (2015), Iss. P.120

    https://doi.org/10.1016/j.jcp.2015.02.052 [Citations: 26]
  73. A Staggered Semi-implicit Discontinuous Galerkin Scheme with a Posteriori Subcell Finite Volume Limiter for the Euler Equations of Gasdynamics

    Ioriatti, Matteo | Dumbser, Michael | Loubère, Raphaël

    Journal of Scientific Computing, Vol. 83 (2020), Iss. 2

    https://doi.org/10.1007/s10915-020-01209-w [Citations: 3]
  74. Discontinuous Galerkin Methods for Compressible and Incompressible Flows on Space–Time Adaptive Meshes: Toward a Novel Family of Efficient Numerical Methods for Fluid Dynamics

    Fambri, Francesco

    Archives of Computational Methods in Engineering, Vol. 27 (2020), Iss. 1 P.199

    https://doi.org/10.1007/s11831-018-09308-6 [Citations: 13]
  75. A direct Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D

    Boscheri, Walter | Dumbser, Michael

    Journal of Computational Physics, Vol. 275 (2014), Iss. P.484

    https://doi.org/10.1016/j.jcp.2014.06.059 [Citations: 106]
  76. High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes

    Gaburro, Elena | Boscheri, Walter | Chiocchetti, Simone | Klingenberg, Christian | Springel, Volker | Dumbser, Michael

    Journal of Computational Physics, Vol. 407 (2020), Iss. P.109167

    https://doi.org/10.1016/j.jcp.2019.109167 [Citations: 72]
  77. A MOOD-like compact high order finite volume scheme with adaptive mesh refinement

    Loubère, Raphaël | Turpault, Rodolphe | Bourriaud, Alexandre

    Applied Mathematics and Computation, Vol. 443 (2023), Iss. P.127792

    https://doi.org/10.1016/j.amc.2022.127792 [Citations: 1]
  78. Space–time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting

    Zanotti, Olindo | Fambri, Francesco | Dumbser, Michael | Hidalgo, Arturo

    Computers & Fluids, Vol. 118 (2015), Iss. P.204

    https://doi.org/10.1016/j.compfluid.2015.06.020 [Citations: 118]
  79. A relaxed a posteriori MOOD algorithm for multicomponent compressible flows using high-order finite-volume methods on unstructured meshes

    Tsoutsanis, Panagiotis | Pavan Kumar, Machavolu Sai Santosh | Farmakis, Pericles S.

    Applied Mathematics and Computation, Vol. 437 (2023), Iss. P.127544

    https://doi.org/10.1016/j.amc.2022.127544 [Citations: 2]
  80. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism

    Balsara, Dinshaw S. | Amano, Takanobu | Garain, Sudip | Kim, Jinho

    Journal of Computational Physics, Vol. 318 (2016), Iss. P.169

    https://doi.org/10.1016/j.jcp.2016.05.006 [Citations: 43]
  81. A triangle-based positive semi-discrete Lagrangian–Eulerian scheme via the weak asymptotic method for scalar equations and systems of hyperbolic conservation laws

    Abreu, Eduardo | Agudelo, Jorge | Pérez, John

    Journal of Computational and Applied Mathematics, Vol. 437 (2024), Iss. P.115465

    https://doi.org/10.1016/j.cam.2023.115465 [Citations: 0]
  82. Reprint of: Direct Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes

    Gaburro, Elena | Dumbser, Michael | Castro, Manuel J.

    Computers & Fluids, Vol. 169 (2018), Iss. P.263

    https://doi.org/10.1016/j.compfluid.2018.03.051 [Citations: 3]
  83. Space-Time Adaptive ADER-DG Finite Element Method with LST-DG Predictor and a posteriori Sub-cell WENO Finite-Volume Limiting for Simulation of Non-stationary Compressible Multicomponent Reactive Flows

    Popov, I. S.

    Journal of Scientific Computing, Vol. 95 (2023), Iss. 2

    https://doi.org/10.1007/s10915-023-02164-y [Citations: 4]
  84. Efficient implementation of space-time adaptive ADER-DG finite element method with LST-DG predictor and a posteriori sub-cell WENO finite-volume limiting for simulation of non-stationary compressible multicomponent reactive flows

    Popov, Ivan S

    Journal of Physics: Conference Series, Vol. 1740 (2021), Iss. 1 P.012059

    https://doi.org/10.1088/1742-6596/1740/1/012059 [Citations: 0]
  85. High Order ADER-IPDG Methods for the Unsteady Advection-Diffusion Equation

    Bergmann, Michel | Bouharguane, Afaf | Iollo, Angelo | Tardieu, Alexis

    Communications on Applied Mathematics and Computation, Vol. 6 (2024), Iss. 3 P.1954

    https://doi.org/10.1007/s42967-023-00355-w [Citations: 0]
  86. Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers

    Balsara, Dinshaw S. | Dumbser, Michael

    Journal of Computational Physics, Vol. 299 (2015), Iss. P.687

    https://doi.org/10.1016/j.jcp.2015.07.012 [Citations: 81]
  87. An almost fail-safe a-posteriori limited high-order CAT scheme

    Macca, Emanuele | Loubère, Raphaël | Parés, Carlos | Russo, Giovanni

    Journal of Computational Physics, Vol. 498 (2024), Iss. P.112650

    https://doi.org/10.1016/j.jcp.2023.112650 [Citations: 3]