Stability of Projection Methods for Incompressible Flows Using High Order Pressure-Velocity Pairs of Same Degree: Continuous and Discontinuous Galerkin Formulations
Year: 2014
Communications in Computational Physics, Vol. 16 (2014), Iss. 3 : pp. 817–840
Abstract
This paper presents limits for stability of projection type schemes when
using high order pressure-velocity pairs of same degree. Two high order $h/p$ variational methods encompassing continuous and discontinuous Galerkin formulations
are used to explain previously observed lower limits on the time step for projection
type schemes to be stable [18], when $h$- or $p$-refinement strategies are considered. In
addition, the analysis included in this work shows that these stability limits depend not only on the time step but on the product of the latter and the kinematic viscosity, which is of particular importance in the study of high Reynolds number flows.
We show that high order methods prove advantageous in stabilising the simulations
when small time steps and low kinematic viscosities are used.
Drawing upon this analysis, we demonstrate how the effects of this instability can
be reduced in the discontinuous scheme by introducing a stabilisation term into the
global system. Finally, we show that these lower limits are compatible with Courant-Friedrichs-Lewy (CFL) type restrictions, given that a sufficiently high polynomial order or a mall enough mesh spacing is selected.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.290114.170414a
Communications in Computational Physics, Vol. 16 (2014), Iss. 3 : pp. 817–840
Published online: 2014-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 24
-
Flow Structures in the Turbulent Wake of a Cross Flow Wind Turbine
Ramos Casado, Gemma | Beltrán, Víctor | Le Clainche, Soledad | Ferrer, Esteban | Vega, José M.2018 Wind Energy Symposium, (2018),
https://doi.org/10.2514/6.2018-0253 [Citations: 3] -
Stability evaluation of high-order splitting method for incompressible flow based on discontinuous velocity and continuous pressure
Xu, Liyang | Xu, Xinhai | Ren, Xiaoguang | Guo, Yunrui | Feng, Yongquan | Yang, XuejunAdvances in Mechanical Engineering, Vol. 11 (2019), Iss. 10
https://doi.org/10.1177/1687814019855586 [Citations: 1] -
On the stability of projection methods for the incompressible Navier–Stokes equations based on high-order discontinuous Galerkin discretizations
Fehn, Niklas | Wall, Wolfgang A. | Kronbichler, MartinJournal of Computational Physics, Vol. 351 (2017), Iss. P.392
https://doi.org/10.1016/j.jcp.2017.09.031 [Citations: 34] -
Robust and efficient discontinuous Galerkin methods for under-resolved turbulent incompressible flows
Fehn, Niklas | Wall, Wolfgang A. | Kronbichler, MartinJournal of Computational Physics, Vol. 372 (2018), Iss. P.667
https://doi.org/10.1016/j.jcp.2018.06.037 [Citations: 29] -
Analysis of a linearization scheme for an interior penalty discontinuous Galerkin method for two‐phase flow in porous media with dynamic capillarity effects
Karpinski, Stefan | Pop, Iuliu Sorin | Radu, Florin AdrianInternational Journal for Numerical Methods in Engineering, Vol. 112 (2017), Iss. 6 P.553
https://doi.org/10.1002/nme.5526 [Citations: 17] -
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018
Implicit Large Eddy Simulations for NACA0012 Airfoils Using Compressible and Incompressible Discontinuous Galerkin Solvers
Ferrer, Esteban | Manzanero, Juan | Rueda-Ramirez, Andres M. | Rubio, Gonzalo | Valero, Eusebio2020
https://doi.org/10.1007/978-3-030-39647-3_38 [Citations: 2] -
A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow
Krank, Benjamin | Fehn, Niklas | Wall, Wolfgang A. | Kronbichler, MartinJournal of Computational Physics, Vol. 348 (2017), Iss. P.634
https://doi.org/10.1016/j.jcp.2017.07.039 [Citations: 61] -
CFD for Wind and Tidal Offshore Turbines
Flow Scales in Cross-Flow Turbines
Ferrer, Esteban | Le Clainche, Soledad2015
https://doi.org/10.1007/978-3-319-16202-7_1 [Citations: 2] -
A spectral deferred correction method for incompressible flow with variable viscosity
Stiller, Jörg
Journal of Computational Physics, Vol. 423 (2020), Iss. P.109840
https://doi.org/10.1016/j.jcp.2020.109840 [Citations: 4] -
: A high-order discontinuous Galerkin solver for flow simulations and multi-physics applications
Ferrer, E. | Rubio, G. | Ntoukas, G. | Laskowski, W. | Mariño, O.A. | Colombo, S. | Mateo-Gabín, A. | Marbona, H. | Manrique de Lara, F. | Huergo, D. | Manzanero, J. | Rueda-Ramírez, A.M. | Kopriva, D.A. | Valero, E.Computer Physics Communications, Vol. 287 (2023), Iss. P.108700
https://doi.org/10.1016/j.cpc.2023.108700 [Citations: 23] -
A pressure-based solver for low-Mach number flow using a discontinuous Galerkin method
Hennink, Aldo | Tiberga, Marco | Lathouwers, DannyJournal of Computational Physics, Vol. 425 (2021), Iss. P.109877
https://doi.org/10.1016/j.jcp.2020.109877 [Citations: 7] -
A wavelet‐based variational multiscale method for the LES of incompressible flows in a high‐order DG‐FEM framework
Pinto, Brijesh | de la Llave Plata, Marta | Lamballais, EricInternational Journal for Numerical Methods in Fluids, Vol. 92 (2020), Iss. 4 P.285
https://doi.org/10.1002/fld.4784 [Citations: 1] -
Nektar++: An open-source spectral/hp element framework
Cantwell, C.D. | Moxey, D. | Comerford, A. | Bolis, A. | Rocco, G. | Mengaldo, G. | De Grazia, D. | Yakovlev, S. | Lombard, J.-E. | Ekelschot, D. | Jordi, B. | Xu, H. | Mohamied, Y. | Eskilsson, C. | Nelson, B. | Vos, P. | Biotto, C. | Kirby, R.M. | Sherwin, S.J.Computer Physics Communications, Vol. 192 (2015), Iss. P.205
https://doi.org/10.1016/j.cpc.2015.02.008 [Citations: 419] -
Finite surface discretization for incompressible Navier-Stokes equations and coupled conservation laws
Hokpunna, Arpiruk | Misaka, Takashi | Obayashi, Shigeru | Wongwises, Somchai | Manhart, MichaelJournal of Computational Physics, Vol. 423 (2020), Iss. P.109790
https://doi.org/10.1016/j.jcp.2020.109790 [Citations: 4] -
Efficiency of high‐performance discontinuous Galerkin spectral element methods for under‐resolved turbulent incompressible flows
Fehn, Niklas | Wall, Wolfgang A. | Kronbichler, MartinInternational Journal for Numerical Methods in Fluids, Vol. 88 (2018), Iss. 1 P.32
https://doi.org/10.1002/fld.4511 [Citations: 35] -
Implicit formulation of material point method for analysis of incompressible materials
Kularathna, Shyamini | Soga, KenichiComputer Methods in Applied Mechanics and Engineering, Vol. 313 (2017), Iss. P.673
https://doi.org/10.1016/j.cma.2016.10.013 [Citations: 57] -
Large Eddy Simulation of an Inverted Multi-element Wing in Ground Effect
Slaughter, James | Moxey, David | Sherwin, SpencerFlow, Turbulence and Combustion, Vol. 110 (2023), Iss. 4 P.917
https://doi.org/10.1007/s10494-023-00404-7 [Citations: 2] -
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016
Towards p-Adaptive Spectral/hp Element Methods for Modelling Industrial Flows
Moxey, D. | Cantwell, C. D. | Mengaldo, G. | Serson, D. | Ekelschot, D. | Peiró, J. | Sherwin, S. J. | Kirby, R. M.2017
https://doi.org/10.1007/978-3-319-65870-4_4 [Citations: 2] -
A GPU accelerated discontinuous Galerkin incompressible flow solver
Karakus, A. | Chalmers, N. | Świrydowicz, K. | Warburton, T.Journal of Computational Physics, Vol. 390 (2019), Iss. P.380
https://doi.org/10.1016/j.jcp.2019.04.010 [Citations: 20] -
Onset of three-dimensional flow instabilities in lid-driven circular cavities
González, L. M. | Ferrer, E. | Díaz-Ojeda, H. R.Physics of Fluids, Vol. 29 (2017), Iss. 6
https://doi.org/10.1063/1.4984242 [Citations: 20] -
Recent Advances in CFD for Wind and Tidal Offshore Turbines
Simple Models for Cross Flow Turbines
Ferrer, Esteban | Le Clainche, Soledad2019
https://doi.org/10.1007/978-3-030-11887-7_1 [Citations: 1] -
The Bassi Rebay 1 scheme is a special case of the Symmetric Interior Penalty formulation for discontinuous Galerkin discretisations with Gauss–Lobatto points
Manzanero, Juan | Rueda-Ramírez, Andrés M. | Rubio, Gonzalo | Ferrer, EstebanJournal of Computational Physics, Vol. 363 (2018), Iss. P.1
https://doi.org/10.1016/j.jcp.2018.02.035 [Citations: 19] -
Molecular dynamics simulations in hybrid particle-continuum schemes: Pitfalls and caveats
Stalter, S. | Yelash, L. | Emamy, N. | Statt, A. | Hanke, M. | Lukáčová-Medvid’ová, M. | Virnau, P.Computer Physics Communications, Vol. 224 (2018), Iss. P.198
https://doi.org/10.1016/j.cpc.2017.10.016 [Citations: 14] -
An interior penalty stabilised incompressible discontinuous Galerkin–Fourier solver for implicit large eddy simulations
Ferrer, Esteban
Journal of Computational Physics, Vol. 348 (2017), Iss. P.754
https://doi.org/10.1016/j.jcp.2017.07.049 [Citations: 48] -
A high-order generalised differential quadrature element method for simulating 2D and 3D incompressible flows on unstructured meshes
Liu, Yaguang | Shu, Chang | Yu, Peng | Liu, Yangyang | Zhang, Hua | Lu, ChunComputers & Mathematics with Applications, Vol. 174 (2024), Iss. P.230
https://doi.org/10.1016/j.camwa.2024.08.027 [Citations: 0] -
Spectral/hp element simulation of flow past a Formula One front wing: Validation against experiments
Buscariolo, Filipe F. | Hoessler, Julien | Moxey, David | Jassim, Ayad | Gouder, Kevin | Basley, Jeremy | Murai, Yushi | Assi, Gustavo R.S. | Sherwin, Spencer J.Journal of Wind Engineering and Industrial Aerodynamics, Vol. 221 (2022), Iss. P.104832
https://doi.org/10.1016/j.jweia.2021.104832 [Citations: 7] -
Design of a Smagorinsky spectral Vanishing Viscosity turbulence model for discontinuous Galerkin methods
Manzanero, Juan | Ferrer, Esteban | Rubio, Gonzalo | Valero, EusebioComputers & Fluids, Vol. 200 (2020), Iss. P.104440
https://doi.org/10.1016/j.compfluid.2020.104440 [Citations: 31] -
A high-order nodal discontinuous Galerkin method for simulation of three-dimensional non-cavitating/cavitating flows
Hajihassanpour, Mahya | Hejranfar, KazemFinite Elements in Analysis and Design, Vol. 200 (2022), Iss. P.103681
https://doi.org/10.1016/j.finel.2021.103681 [Citations: 0] -
Multimaterial Eulerian finite element formulation for pressure‐sensitive adhesives
Nishiguchi, Koji | Okazawa, Shigenobu | Tsubokura, MakotoInternational Journal for Numerical Methods in Engineering, Vol. 114 (2018), Iss. 13 P.1368
https://doi.org/10.1002/nme.5790 [Citations: 9] -
Adaptation strategies for high order discontinuous Galerkin methods based on Tau-estimation
Kompenhans, Moritz | Rubio, Gonzalo | Ferrer, Esteban | Valero, EusebioJournal of Computational Physics, Vol. 306 (2016), Iss. P.216
https://doi.org/10.1016/j.jcp.2015.11.032 [Citations: 36] -
Blade–wake interactions in cross-flow turbines
Ferrer, Esteban | Willden, Richard H.J.International Journal of Marine Energy, Vol. 11 (2015), Iss. P.71
https://doi.org/10.1016/j.ijome.2015.06.001 [Citations: 17] -
On the performance of the DG method with a directional do-nothing boundary condition
Garcia, Aureo Quintas | Gomes, Francisco Augusto Aparecido | Hecke, Mildred BallinJournal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 39 (2017), Iss. 10 P.3919
https://doi.org/10.1007/s40430-017-0868-8 [Citations: 1] -
A Reduced Order Model to Predict Transient Flows around Straight Bladed Vertical Axis Wind Turbines
Le Clainche, Soledad | Ferrer, EstebanEnergies, Vol. 11 (2018), Iss. 3 P.566
https://doi.org/10.3390/en11030566 [Citations: 43] -
Comparisons of p-adaptation strategies based on truncation- and discretisation-errors for high order discontinuous Galerkin methods
Kompenhans, Moritz | Rubio, Gonzalo | Ferrer, Esteban | Valero, EusebioComputers & Fluids, Vol. 139 (2016), Iss. P.36
https://doi.org/10.1016/j.compfluid.2016.03.026 [Citations: 41] -
Dispersion-Dissipation Analysis for Advection Problems with Nonconstant Coefficients: Applications to Discontinuous Galerkin Formulations
Manzanero, Juan | Rubio, Gonzalo | Ferrer, Esteban | Valero, EusebioSIAM Journal on Scientific Computing, Vol. 40 (2018), Iss. 2 P.A747
https://doi.org/10.1137/16M1101143 [Citations: 25] -
Implicit-explicit and explicit projection schemes for the unsteady incompressible Navier–Stokes equations using a high-order dG method
Emamy, Nehzat | Kummer, Florian | Mrosek, Markus | Karcher, Martin | Oberlack, MartinComputers & Fluids, Vol. 154 (2017), Iss. P.285
https://doi.org/10.1016/j.compfluid.2017.06.003 [Citations: 4] -
A pressure correction scheme for generalized form of energy-stable open boundary conditions for incompressible flows
Dong, S. | Shen, J.Journal of Computational Physics, Vol. 291 (2015), Iss. P.254
https://doi.org/10.1016/j.jcp.2015.03.012 [Citations: 28] -
High-order arbitrary Lagrangian–Eulerian discontinuous Galerkin methods for the incompressible Navier–Stokes equations
Fehn, Niklas | Heinz, Johannes | Wall, Wolfgang A. | Kronbichler, MartinJournal of Computational Physics, Vol. 430 (2021), Iss. P.110040
https://doi.org/10.1016/j.jcp.2020.110040 [Citations: 8] -
An entropy–stable discontinuous Galerkin approximation for the incompressible Navier–Stokes equations with variable density and artificial compressibility
Manzanero, Juan | Rubio, Gonzalo | Kopriva, David A. | Ferrer, Esteban | Valero, EusebioJournal of Computational Physics, Vol. 408 (2020), Iss. P.109241
https://doi.org/10.1016/j.jcp.2020.109241 [Citations: 13] -
A high-order Discontinuous Galerkin solver for unsteady incompressible turbulent flows
Noventa, G. | Massa, F. | Bassi, F. | Colombo, A. | Franchina, N. | Ghidoni, A.Computers & Fluids, Vol. 139 (2016), Iss. P.248
https://doi.org/10.1016/j.compfluid.2016.03.007 [Citations: 25] -
An implicit dual-time stepping high-order nodal discontinuous Galerkin method for solving incompressible flows on triangle elements
Hajihassanpour, M. | Hejranfar, K.Mathematics and Computers in Simulation, Vol. 168 (2020), Iss. P.173
https://doi.org/10.1016/j.matcom.2019.08.011 [Citations: 5] -
A stable discontinuous Galerkin method based on high‐order dual splitting scheme without additional stabilization term for incompressible flows
Ma, Mengxia | Ouyang, Jie | Wang, Xiaodong | Zhang, ChenhuiInternational Journal for Numerical Methods in Fluids, Vol. 93 (2021), Iss. 8 P.2660
https://doi.org/10.1002/fld.4992 [Citations: 2]