Year: 2014
Communications in Computational Physics, Vol. 16 (2014), Iss. 5 : pp. 1239–1262
Abstract
We present a new splitting method for time-dependent convention-dominated diffusion problems. The original convention diffusion system is split into two sub-systems: a pure convection system and a diffusion system. At each time step, a convection problem and a diffusion problem are solved successively. A few important features of the scheme lie in the facts that the convection subproblem is solved explicitly and multistep techniques can be used to essentially enlarge the stability region so that the resulting scheme behaves like an unconditionally stable scheme; while the diffusion subproblem is always self-adjoint and coercive so that they can be solved efficiently using many existing optimal preconditioned iterative solvers. The scheme can be extended for solving the Navier-Stokes equations, where the nonlinearity is resolved by a linear explicit multistep scheme at the convection step, while only a generalized Stokes problem is needed to solve at the diffusion step and the major stiffness matrix stays invariant in the time marching process. Numerical simulations are presented to demonstrate the stability, convergence and performance of the single-step and multistep variants of the new scheme.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.031013.030614a
Communications in Computational Physics, Vol. 16 (2014), Iss. 5 : pp. 1239–1262
Published online: 2014-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 24