Efficient Variable-Coefficient Finite-Volume Stokes Solvers

Efficient Variable-Coefficient Finite-Volume Stokes Solvers

Year:    2014

Communications in Computational Physics, Vol. 16 (2014), Iss. 5 : pp. 1263–1297

Abstract

We investigate several robust preconditioners for solving the saddle-point linear systems that arise from spatial discretization of unsteady and steady variable-coefficient Stokes equations on a uniform staggered grid. Building on the success of using the classical projection method as a preconditioner for the coupled velocity-pressure system [B. E. Griffith, J. Comp. Phys., 228 (2009), pp. 7565–7595], as well as established techniques for steady and unsteady Stokes flow in the finite-element literature, we construct preconditioners that employ independent generalized Helmholtz and Poisson solvers for the velocity and pressure subproblems. We demonstrate that only a single cycle of a standard geometric multigrid algorithm serves as an effective inexact solver for each of these subproblems. Contrary to traditional wisdom, we find that the Stokes problem can be solved nearly as efficiently as the independent pressure and velocity subproblems, making the overall cost of solving the Stokes system comparable to the cost of classical projection or fractional step methods for incompressible flow, even for steady flow and in the presence of large density and viscosity contrasts. Two of the five preconditioners considered here are found to be robust to GMRES restarts and to increasing problem size, making them suitable for large-scale problems. Our work opens many possibilities for constructing novel unsplit temporal integrators for finite-volume spatial discretizations of the equations of low Mach and incompressible flow dynamics.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.070114.170614a

Communications in Computational Physics, Vol. 16 (2014), Iss. 5 : pp. 1263–1297

Published online:    2014-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    35

Keywords:   

  1. A high-order spectral deferred correction strategy for low Mach number flow with complex chemistry

    Pazner, Will E. | Nonaka, Andrew | Bell, John B. | Day, Marcus S. | Minion, Michael L.

    Combustion Theory and Modelling, Vol. 20 (2016), Iss. 3 P.521

    https://doi.org/10.1080/13647830.2016.1150519 [Citations: 21]
  2. Implementation of a hybrid Lagrangian filtered density function–large eddy simulation methodology in a dynamic adaptive mesh refinement environment

    Castro, Laura Pereira de | Pinheiro, Abgail Paula | Vilela, Vitor | Magalhães, Gabriel Marcos | Serfaty, Ricardo | Vedovotto, João Marcelo

    Physics of Fluids, Vol. 33 (2021), Iss. 4

    https://doi.org/10.1063/5.0045873 [Citations: 7]
  3. Discrete Mechanics

    References

    2019

    https://doi.org/10.1002/9781119482826.refs [Citations: 0]
  4. An immersed boundary method for rigid bodies

    Kallemov, Bakytzhan | Bhalla, Amneet | Griffith, Boyce | Donev, Aleksandar

    Communications in Applied Mathematics and Computational Science, Vol. 11 (2016), Iss. 1 P.79

    https://doi.org/10.2140/camcos.2016.11.79 [Citations: 72]
  5. Immersed boundary-finite element model of fluid–structure interaction in the aortic root

    Flamini, Vittoria | DeAnda, Abe | Griffith, Boyce E.

    Theoretical and Computational Fluid Dynamics, Vol. 30 (2016), Iss. 1-2 P.139

    https://doi.org/10.1007/s00162-015-0374-5 [Citations: 29]
  6. Inferring rheology and geometry of subsurface structures by adjoint-based inversion of principal stress directions

    Reuber, G S | Holbach, L | Popov, A A | Hanke, M | Kaus, B J P

    Geophysical Journal International, Vol. 223 (2020), Iss. 2 P.851

    https://doi.org/10.1093/gji/ggaa344 [Citations: 10]
  7. Analysis of some projection method based preconditioners for models of incompressible flow

    Cai, Mingchao

    Applied Numerical Mathematics, Vol. 90 (2015), Iss. P.77

    https://doi.org/10.1016/j.apnum.2014.12.003 [Citations: 4]
  8. Deriving scaling laws in geodynamics using adjoint gradients

    Reuber, Georg S. | Popov, Anton A. | Kaus, Boris J.P.

    Tectonophysics, Vol. 746 (2018), Iss. P.352

    https://doi.org/10.1016/j.tecto.2017.07.017 [Citations: 7]
  9. Multiscale temporal integrators for fluctuating hydrodynamics

    Delong, Steven | Sun, Yifei | Griffith, Boyce E. | Vanden-Eijnden, Eric | Donev, Aleksandar

    Physical Review E, Vol. 90 (2014), Iss. 6

    https://doi.org/10.1103/PhysRevE.90.063312 [Citations: 28]
  10. A Kinematics Scalar Projection Method (KSP) for Incompressible Flows with Variable Density

    Caltagirone, Jean-Paul | Vincent, Stéphane

    Open Journal of Fluid Dynamics, Vol. 05 (2015), Iss. 02 P.171

    https://doi.org/10.4236/ojfd.2015.52019 [Citations: 4]
  11. A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids

    Feng, Wenqiang | Guo, Zhenlin | Lowengrub, John S. | Wise, Steven M.

    Journal of Computational Physics, Vol. 352 (2018), Iss. P.463

    https://doi.org/10.1016/j.jcp.2017.09.065 [Citations: 17]
  12. A model predictive control (MPC)-integrated multiphase immersed boundary (IB) framework for simulating wave energy converters (WECs)

    Khedkar, Kaustubh | Bhalla, Amneet Pal Singh

    Ocean Engineering, Vol. 260 (2022), Iss. P.111908

    https://doi.org/10.1016/j.oceaneng.2022.111908 [Citations: 10]
  13. Higher-order temporal integration for the incompressible Navier–Stokes equations in bounded domains

    Minion, M.L. | Saye, R.I.

    Journal of Computational Physics, Vol. 375 (2018), Iss. P.797

    https://doi.org/10.1016/j.jcp.2018.08.054 [Citations: 13]
  14. Application of projection methods to simulating mass transport in reverse osmosis systems

    Johnston, Jacob | Lou, Jincheng | Tilton, Nils

    Computers & Fluids, Vol. 232 (2022), Iss. P.105189

    https://doi.org/10.1016/j.compfluid.2021.105189 [Citations: 8]
  15. Multiscale modeling of a gas separation device based on effect of thermal transpiration in the membrane

    Kosyanchuk, Vasily | Kovalev, Valery | Yakunchikov, Artem

    Separation and Purification Technology, Vol. 180 (2017), Iss. P.58

    https://doi.org/10.1016/j.seppur.2017.02.038 [Citations: 18]
  16. Low Mach number fluctuating hydrodynamics of multispecies liquid mixtures

    Donev, Aleksandar | Nonaka, Andy | Bhattacharjee, Amit Kumar | Garcia, Alejandro L. | Bell, John B.

    Physics of Fluids, Vol. 27 (2015), Iss. 3

    https://doi.org/10.1063/1.4913571 [Citations: 27]
  17. A Multilevel Active-Set Preconditioner for Box-Constrained Pressure Poisson Solvers

    Takahashi, Tetsuya | Batty, Christopher

    Proceedings of the ACM on Computer Graphics and Interactive Techniques, Vol. 6 (2023), Iss. 3 P.1

    https://doi.org/10.1145/3606939 [Citations: 0]
  18. Projection method for the fluctuating hydrodynamics equations

    Mancini, Marc | Theillard, Maxime | Kim, Changho

    Journal of Computational Physics, Vol. 463 (2022), Iss. P.111288

    https://doi.org/10.1016/j.jcp.2022.111288 [Citations: 1]
  19. Finite difference method in prolate spheroidal coordinates for freely suspended spheroidal particles in linear flows of viscous and viscoelastic fluids

    Sharma, Arjun | Koch, Donald L.

    Journal of Computational Physics, Vol. 495 (2023), Iss. P.112559

    https://doi.org/10.1016/j.jcp.2023.112559 [Citations: 0]
  20. Low Mach number fluctuating hydrodynamics for electrolytes

    Péraud, Jean-Philippe | Nonaka, Andy | Chaudhri, Anuj | Bell, John B. | Donev, Aleksandar | Garcia, Alejandro L.

    Physical Review Fluids, Vol. 1 (2016), Iss. 7

    https://doi.org/10.1103/PhysRevFluids.1.074103 [Citations: 22]
  21. Discrete ion stochastic continuum overdamped solvent algorithm for modeling electrolytes

    Ladiges, D. R. | Nonaka, A. | Klymko, K. | Moore, G. C. | Bell, J. B. | Carney, S. P. | Garcia, A. L. | Natesh, S. R. | Donev, A.

    Physical Review Fluids, Vol. 6 (2021), Iss. 4

    https://doi.org/10.1103/PhysRevFluids.6.044309 [Citations: 12]
  22. A DLM immersed boundary method based wave-structure interaction solver for high density ratio multiphase flows

    Nangia, Nishant | Patankar, Neelesh A. | Bhalla, Amneet Pal Singh

    Journal of Computational Physics, Vol. 398 (2019), Iss. P.108804

    https://doi.org/10.1016/j.jcp.2019.07.004 [Citations: 44]
  23. Modeling electrokinetic flows with the discrete ion stochastic continuum overdamped solvent algorithm

    Ladiges, D. R. | Wang, J. G. | Srivastava, I. | Nonaka, A. | Bell, J. B. | Carney, S. P. | Garcia, A. L. | Donev, A.

    Physical Review E, Vol. 106 (2022), Iss. 3

    https://doi.org/10.1103/PhysRevE.106.035104 [Citations: 5]
  24. Comparison of wave–structure interaction dynamics of a submerged cylindrical point absorber with three degrees of freedom using potential flow and computational fluid dynamics models

    Dafnakis, Panagiotis | Bhalla, Amneet Pal Singh | Sirigu, Sergej Antonello | Bonfanti, Mauro | Bracco, Giovanni | Mattiazzo, Giuliana

    Physics of Fluids, Vol. 32 (2020), Iss. 9

    https://doi.org/10.1063/5.0022401 [Citations: 34]
  25. Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach

    Balboa Usabiaga, Florencio | Kallemov, Bakytzhan | Delmotte, Blaise | Bhalla, Amneet | Griffith, Boyce | Donev, Aleksandar

    Communications in Applied Mathematics and Computational Science, Vol. 11 (2016), Iss. 2 P.217

    https://doi.org/10.2140/camcos.2016.11.217 [Citations: 71]
  26. Preconditioners for Two-Phase Incompressible Navier--Stokes Flow

    Bootland, Niall | Bentley, Alistair | Kees, Christopher | Wathen, Andrew

    SIAM Journal on Scientific Computing, Vol. 41 (2019), Iss. 4 P.B843

    https://doi.org/10.1137/17M1153674 [Citations: 12]
  27. Fluctuating hydrodynamics of reactive liquid mixtures

    Kim, Changho | Nonaka, Andy | Bell, John B. | Garcia, Alejandro L. | Donev, Aleksandar

    The Journal of Chemical Physics, Vol. 149 (2018), Iss. 8

    https://doi.org/10.1063/1.5043428 [Citations: 11]
  28. Simulating water-entry/exit problems using Eulerian–Lagrangian and fully-Eulerian fictitious domain methods within the open-source IBAMR library

    Bhalla, Amneet Pal Singh | Nangia, Nishant | Dafnakis, Panagiotis | Bracco, Giovanni | Mattiazzo, Giuliana

    Applied Ocean Research, Vol. 94 (2020), Iss. P.101932

    https://doi.org/10.1016/j.apor.2019.101932 [Citations: 36]
  29. Seafloor expression of oceanic detachment faulting reflects gradients in mid-ocean ridge magma supply

    Howell, Samuel M. | Olive, Jean-Arthur | Ito, Garrett | Behn, Mark D. | Escartín, Javier | Kaus, Boris

    Earth and Planetary Science Letters, Vol. 516 (2019), Iss. P.176

    https://doi.org/10.1016/j.epsl.2019.04.001 [Citations: 28]
  30. A robust incompressible Navier-Stokes solver for high density ratio multiphase flows

    Nangia, Nishant | Griffith, Boyce E. | Patankar, Neelesh A. | Bhalla, Amneet Pal Singh

    Journal of Computational Physics, Vol. 390 (2019), Iss. P.548

    https://doi.org/10.1016/j.jcp.2019.03.042 [Citations: 63]
  31. Monolithic Solvers for Incompressible Two-Phase Flows at Large Density and Viscosity Ratios

    El Ouafa, Mohamed | Vincent, Stephane | Le Chenadec, Vincent

    Fluids, Vol. 6 (2021), Iss. 1 P.23

    https://doi.org/10.3390/fluids6010023 [Citations: 7]
  32. Box-relaxation based multigrid solvers for the variable viscosity Stokes problem

    Borzacchiello, Domenico | Leriche, Emmanuel | Blottière, Benoît | Guillet, Jacques

    Computers & Fluids, Vol. 156 (2017), Iss. P.515

    https://doi.org/10.1016/j.compfluid.2017.08.027 [Citations: 8]
  33. Steric effects in induced-charge electro-osmosis for strong electric fields

    Galen Wang, J. | Ladiges, Daniel R. | Srivastava, Ishan | Carney, Sean P. | Nonaka, Andy J. | Garcia, Alejandro L. | Bell, John B.

    Physical Review Fluids, Vol. 8 (2023), Iss. 8

    https://doi.org/10.1103/PhysRevFluids.8.083702 [Citations: 1]
  34. Fully-coupled parallel solver for the simulation of two-phase incompressible flows

    El Ouafa, Simon | Vincent, Stéphane | Le Chenadec, Vincent | Trouette, Benoît

    Computers & Fluids, Vol. 265 (2023), Iss. P.105995

    https://doi.org/10.1016/j.compfluid.2023.105995 [Citations: 2]
  35. Low Mach number fluctuating hydrodynamics model for ionic liquids

    Klymko, Katherine | Nonaka, Andrew | Bell, John B. | Carney, Sean P. | Garcia, Alejandro L.

    Physical Review Fluids, Vol. 5 (2020), Iss. 9

    https://doi.org/10.1103/PhysRevFluids.5.093701 [Citations: 4]
  36. An effective preconditioning strategy for volume penalized incompressible/low Mach multiphase flow solvers

    Thirumalaisamy, Ramakrishnan | Khedkar, Kaustubh | Ghysels, Pieter | Bhalla, Amneet Pal Singh

    Journal of Computational Physics, Vol. 490 (2023), Iss. P.112325

    https://doi.org/10.1016/j.jcp.2023.112325 [Citations: 4]
  37. Immersed Boundary Smooth Extension (IBSE): A high-order method for solving incompressible flows in arbitrary smooth domains

    Stein, David B. | Guy, Robert D. | Thomases, Becca

    Journal of Computational Physics, Vol. 335 (2017), Iss. P.155

    https://doi.org/10.1016/j.jcp.2017.01.010 [Citations: 45]
  38. Fluctuating hydrodynamics and the Rayleigh–Plateau instability

    Barker, Bryn | Bell, John B. | Garcia, Alejandro L.

    Proceedings of the National Academy of Sciences, Vol. 120 (2023), Iss. 30

    https://doi.org/10.1073/pnas.2306088120 [Citations: 5]
  39. Solution of Nonlinear Stokes Equations Discretized By High-Order Finite Elements on Nonconforming and Anisotropic Meshes, with Application to Ice Sheet Dynamics

    Isaac, Tobin | Stadler, Georg | Ghattas, Omar

    SIAM Journal on Scientific Computing, Vol. 37 (2015), Iss. 6 P.B804

    https://doi.org/10.1137/140974407 [Citations: 33]
  40. The inertial sea wave energy converter (ISWEC) technology: Device-physics, multiphase modeling and simulations

    Khedkar, Kaustubh | Nangia, Nishant | Thirumalaisamy, Ramakrishnan | Bhalla, Amneet Pal Singh

    Ocean Engineering, Vol. 229 (2021), Iss. P.108879

    https://doi.org/10.1016/j.oceaneng.2021.108879 [Citations: 30]