A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore

A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore

Year:    2014

Communications in Computational Physics, Vol. 15 (2014), Iss. 1 : pp. 93–125

Abstract

The conventional Poisson-Nernst-Planck equations do not account for the finite size of ions explicitly. This leads to solutions featuring unrealistically high ionic concentrations in the regions subject to external potentials, in particular, near highly charged surfaces. A modified form of the Poisson-Nernst-Planck equations accounts for steric effects and results in solutions with finite ion concentrations. Here, we evaluate numerical methods for solving the modified Poisson-Nernst-Planck equations by modeling electric field-driven transport of ions through a nanopore. We describe a novel, robust finite element solver that combines the applications of the Newton's method to the nonlinear Galerkin form of the equations, augmented with stabilization terms to appropriately handle the drift-diffusion processes.
To make direct comparison with particle-based simulations possible, our method is specifically designed to produce solutions under periodic boundary conditions and to conserve the number of ions in the solution domain. We test our finite element solver on a set of challenging numerical experiments that include calculations of the ion distribution in a volume confined between two charged plates, calculations of the ionic current though a nanopore subject to an external electric field, and modeling the effect of a DNA molecule on the ion concentration and nanopore current.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.101112.100413a

Communications in Computational Physics, Vol. 15 (2014), Iss. 1 : pp. 93–125

Published online:    2014-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    33

Keywords:   

  1. A numerical investigation of analyte size effects in nanopore sensing systems

    Szuttor, Kai | Kreissl, Patrick | Holm, Christian

    The Journal of Chemical Physics, Vol. 155 (2021), Iss. 13

    https://doi.org/10.1063/5.0065085 [Citations: 2]
  2. On nanopore DNA sequencing by signal and noise analysis of ionic current

    Wen, Chenyu | Zeng, Shuangshuang | Zhang, Zhen | Hjort, Klas | Scheicher, Ralph | Zhang, Shi-Li

    Nanotechnology, Vol. 27 (2016), Iss. 21 P.215502

    https://doi.org/10.1088/0957-4484/27/21/215502 [Citations: 18]
  3. A stabilized finite volume element method for solving Poisson–Nernst–Planck equations

    Li, Jiao | Ying, Jinyong

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 38 (2022), Iss. 1

    https://doi.org/10.1002/cnm.3543 [Citations: 3]
  4. Accurate modeling of a biological nanopore with an extended continuum framework

    Willems, Kherim | Ruić, Dino | L. R. Lucas, Florian | Barman, Ujjal | Verellen, Niels | Hofkens, Johan | Maglia, Giovanni | Van Dorpe, Pol

    Nanoscale, Vol. 12 (2020), Iss. 32 P.16775

    https://doi.org/10.1039/D0NR03114C [Citations: 30]
  5. An inverse averaging finite element method for solving three-dimensional Poisson–Nernst–Planck equations in nanopore system simulations

    Zhang, Qianru | Wang, Qin | Zhang, Linbo | Lu, Benzhuo

    The Journal of Chemical Physics, Vol. 155 (2021), Iss. 19

    https://doi.org/10.1063/5.0066194 [Citations: 0]
  6. An Engineered Membrane to Measure Electroporation: Effect of Tethers and Bioelectronic Interface

    Hoiles, William | Krishnamurthy, Vikram | Cranfield, Charles G. | Cornell, Bruce

    Biophysical Journal, Vol. 107 (2014), Iss. 6 P.1339

    https://doi.org/10.1016/j.bpj.2014.07.056 [Citations: 23]
  7. Quantitative Understanding of Cation Effects on the Electrochemical Reduction of CO2 and H+ in Acidic Solution

    Qin, Hai-Gang | Li, Fu-Zhi | Du, Yun-Fan | Yang, Lin-Feng | Wang, Hao | Bai, Yi-Yang | Lin, Meng | Gu, Jun

    ACS Catalysis, Vol. 13 (2023), Iss. 2 P.916

    https://doi.org/10.1021/acscatal.2c04875 [Citations: 49]
  8. Protein Transport through Nanopores Illuminated by Long-Time-Scale Simulations

    Mitscha-Baude, Gregor | Stadlbauer, Benjamin | Howorka, Stefan | Heitzinger, Clemens

    ACS Nano, Vol. 15 (2021), Iss. 6 P.9900

    https://doi.org/10.1021/acsnano.1c01078 [Citations: 12]
  9. Close encounters with DNA

    Maffeo, C | Yoo, J | Comer, J | Wells, D B | Luan, B | Aksimentiev, A

    Journal of Physics: Condensed Matter, Vol. 26 (2014), Iss. 41 P.413101

    https://doi.org/10.1088/0953-8984/26/41/413101 [Citations: 45]
  10. Rapid and Accurate Determination of Nanopore Ionic Current Using a Steric Exclusion Model

    Wilson, James | Sarthak, Kumar | Si, Wei | Gao, Luyu | Aksimentiev, Aleksei

    ACS Sensors, Vol. 4 (2019), Iss. 3 P.634

    https://doi.org/10.1021/acssensors.8b01375 [Citations: 58]
  11. Structure-preserving and efficient numerical methods for ion transport

    Ding, Jie | Wang, Zhongming | Zhou, Shenggao

    Journal of Computational Physics, Vol. 418 (2020), Iss. P.109597

    https://doi.org/10.1016/j.jcp.2020.109597 [Citations: 16]
  12. Transport Across Natural and Modified Biological Membranes and its Implications in Physiology and Therapy

    Role of Bioinformatics in the Study of Ionic Channels

    Kurczyńska, Monika | Konopka, Bogumił M. | Kotulska, Małgorzata

    2017

    https://doi.org/10.1007/978-3-319-56895-9_2 [Citations: 2]
  13. Convergence and superconvergence analysis for a mass conservative, energy stable and linearized BDF2 scheme of the Poisson–Nernst–Planck equations

    Li, Minghao | Shi, Dongyang | Li, Zhenzhen

    Communications in Nonlinear Science and Numerical Simulation, Vol. 140 (2025), Iss. P.108351

    https://doi.org/10.1016/j.cnsns.2024.108351 [Citations: 0]
  14. Positivity preserving finite difference methods for Poisson–Nernst–Planck equations with steric interactions: Application to slit-shaped nanopore conductance

    Ding, Jie | Wang, Zhongming | Zhou, Shenggao

    Journal of Computational Physics, Vol. 397 (2019), Iss. P.108864

    https://doi.org/10.1016/j.jcp.2019.108864 [Citations: 24]
  15. Ion Transport in Dipolar Medium I: A Local Dielectric Poisson–Nernst–Planck/Poisson–Boltzmann Model

    Gui, Sheng | Lu, Benzhuo | Yu, Weilin

    SIAM Journal on Applied Mathematics, Vol. 84 (2024), Iss. 5 P.2110

    https://doi.org/10.1137/24M1633959 [Citations: 0]
  16. Experimental and numerical analysis of electroactive characteristics of scleral tissue

    Mehr, Jafar Arash | Hatami-Marbini, Hamed

    Acta Biomaterialia, Vol. 143 (2022), Iss. P.127

    https://doi.org/10.1016/j.actbio.2022.01.017 [Citations: 3]
  17. Modeling the electrical double layer to understand the reaction environment in a CO2electrocatalytic system

    Bohra, Divya | Chaudhry, Jehanzeb H. | Burdyny, Thomas | Pidko, Evgeny A. | Smith, Wilson A.

    Energy & Environmental Science, Vol. 12 (2019), Iss. 11 P.3380

    https://doi.org/10.1039/C9EE02485A [Citations: 147]
  18. A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson–Nernst–Planck systems

    Liu, Hailiang | Wang, Zhongming

    Journal of Computational Physics, Vol. 328 (2017), Iss. P.413

    https://doi.org/10.1016/j.jcp.2016.10.008 [Citations: 36]
  19. Fundamentals and potentials of solid-state nanopores: a review

    Wen, Chenyu | Zhang, Shi-Li

    Journal of Physics D: Applied Physics, Vol. 54 (2021), Iss. 2 P.023001

    https://doi.org/10.1088/1361-6463/ababce [Citations: 25]
  20. Fractional Poisson–Nernst–Planck Model for Ion Channels I: Basic Formulations and Algorithms

    Chen, Duan

    Bulletin of Mathematical Biology, Vol. 79 (2017), Iss. 11 P.2696

    https://doi.org/10.1007/s11538-017-0349-3 [Citations: 2]
  21. Reference Module in Life Sciences

    A Review of Mathematical Modeling, Simulation and Analysis of Membrane Channel Charge Transport ☆

    Chen, Duan | Wei, Guo-Wei

    2017

    https://doi.org/10.1016/B978-0-12-809633-8.12044-8 [Citations: 3]
  22. Stabilized finite element methods to simulate the conductances of ion channels

    Tu, Bin | Xie, Yan | Zhang, Linbo | Lu, Benzhuo

    Computer Physics Communications, Vol. 188 (2015), Iss. P.131

    https://doi.org/10.1016/j.cpc.2014.11.018 [Citations: 17]
  23. Transport Properties of Nanoporous, Chemically Forced Biological Lattices

    Li, Po-Nan | Herrmann, Jonathan | Wakatsuki, Soichi | van den Bedem, Henry

    The Journal of Physical Chemistry B, Vol. 123 (2019), Iss. 49 P.10331

    https://doi.org/10.1021/acs.jpcb.9b05882 [Citations: 2]
  24. A positivity-preserving and free energy dissipative hybrid scheme for the Poisson-Nernst-Planck equations on polygonal and polyhedral meshes

    Su, Shuai | Tang, Huazhong

    Computers & Mathematics with Applications, Vol. 108 (2022), Iss. P.33

    https://doi.org/10.1016/j.camwa.2021.12.019 [Citations: 6]
  25. Conic shapes have higher sensitivity than cylindrical ones in nanopore DNA sequencing

    Tu, Bin | Bai, Shiyang | Lu, Benzhuo | Fang, Qiaojun

    Scientific Reports, Vol. 8 (2018), Iss. 1

    https://doi.org/10.1038/s41598-018-27517-8 [Citations: 18]
  26. An energy-preserving discretization for the Poisson–Nernst–Planck equations

    Flavell, Allen | Kabre, Julienne | Li, Xiaofan

    Journal of Computational Electronics, Vol. 16 (2017), Iss. 2 P.431

    https://doi.org/10.1007/s10825-017-0969-8 [Citations: 16]
  27. Protein sequencing via nanopore based devices: a nanofluidics perspective

    Chinappi, Mauro | Cecconi, Fabio

    Journal of Physics: Condensed Matter, Vol. 30 (2018), Iss. 20 P.204002

    https://doi.org/10.1088/1361-648X/aababe [Citations: 53]
  28. Electroosmosis in nanopores: computational methods and technological applications

    Gubbiotti, Alberto | Baldelli, Matteo | Di Muccio, Giovanni | Malgaretti, Paolo | Marbach, Sophie | Chinappi, Mauro

    Advances in Physics: X, Vol. 7 (2022), Iss. 1

    https://doi.org/10.1080/23746149.2022.2036638 [Citations: 17]
  29. An extended finite element method for the Nernst-Planck-Poisson equations

    Kumar, Pawan | Swaminathan, Narasimhan | Natarajan, Sundararajan

    Solid State Ionics, Vol. 410 (2024), Iss. P.116531

    https://doi.org/10.1016/j.ssi.2024.116531 [Citations: 2]
  30. Biomimetic Nanochannels: From Fabrication Principles to Theoretical Insights

    Kan, Xiaonan | Wu, Chenyu | Wen, Liping | Jiang, Lei

    Small Methods, Vol. 6 (2022), Iss. 4

    https://doi.org/10.1002/smtd.202101255 [Citations: 26]
  31. An Effective Finite Element Iterative Solver for a Poisson--Nernst--Planck Ion Channel Model with Periodic Boundary Conditions

    Xie, Dexuan | Lu, Benzhuo

    SIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 6 P.B1490

    https://doi.org/10.1137/19M1297099 [Citations: 11]
  32. 1D Measurement of Sodium Ion Flow in Hydrogel After a Bath Concentration Jump

    Roos, R. W. | Pel, L. | Huinink, H. P. | Huyghe, J. M.

    Annals of Biomedical Engineering, Vol. 43 (2015), Iss. 7 P.1706

    https://doi.org/10.1007/s10439-015-1293-8 [Citations: 1]