Simulation of Power-Law Fluid Flows in Two-Dimensional Square Cavity Using Multi-Relaxation-Time Lattice Boltzmann Method

Simulation of Power-Law Fluid Flows in Two-Dimensional Square Cavity Using Multi-Relaxation-Time Lattice Boltzmann Method

Year:    2014

Communications in Computational Physics, Vol. 15 (2014), Iss. 1 : pp. 265–284

Abstract

In this paper, the power-law fluid flows in a two-dimensional square cavity are investigated in detail with multi-relaxation-time lattice Boltzmann method (MRT-LBM). The influence of the Reynolds number (Re) and the power-law index (n) on the vortex strength, vortex position and velocity distribution are extensively studied. In our numerical simulations, Re is varied from 100 to 10000, and n is ranged from 0.25 to 1.75, covering both cases of shear-thinning and shear-thickening. Compared with the Newtonian fluid, numerical results show that the flow structure and number of vortex of power-law fluid are not only dependent on the Reynolds number, but also related to power-law index.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.160212.210513a

Communications in Computational Physics, Vol. 15 (2014), Iss. 1 : pp. 265–284

Published online:    2014-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    20

Keywords:   

  1. The computation of strain rate tensor in multiple-relaxation-time lattice Boltzmann model

    Zhang, Wenhuan | Huang, Changsheng | Wang, Yihang | Shi, Baochang | Kuang, Shibo | Chai, Zhenhua

    Computers & Mathematics with Applications, Vol. 75 (2018), Iss. 8 P.2888

    https://doi.org/10.1016/j.camwa.2018.01.019 [Citations: 1]
  2. Implicit-explicit Schemes for Incompressible Flow Problems with Variable Viscosity

    Barrenechea, Gabriel | Castillo, Ernesto | Pacheco, Douglas

    SIAM Journal on Scientific Computing, Vol. 46 (2024), Iss. 4 P.A2660

    https://doi.org/10.1137/23M1606526 [Citations: 0]
  3. Motion of a circular particle in the power-law lid-driven cavity flow

    Yang, Xiao-Feng | Liu, Jiao | Shan, Fang | Chai, Zhen-Hua | Shi, Bao-Chang

    Acta Physica Sinica, Vol. 73 (2024), Iss. 14 P.144701

    https://doi.org/10.7498/aps.73.20240164 [Citations: 0]
  4. Numerical simulation of convective non-Newtonian power-law solid-liquid phase change using the lattice Boltzmann method

    Kebriti, Sajedeh | Moqtaderi, Hamed

    International Journal of Thermal Sciences, Vol. 159 (2021), Iss. P.106574

    https://doi.org/10.1016/j.ijthermalsci.2020.106574 [Citations: 25]
  5. An efficient implicit unstructured finite volume solver for generalised Newtonian fluids

    Jalali, Alireza | Sharbatdar, Mahkame | Ollivier-Gooch, Carl

    International Journal of Computational Fluid Dynamics, Vol. 30 (2016), Iss. 3 P.201

    https://doi.org/10.1080/10618562.2016.1188202 [Citations: 4]
  6. Numerical simulation of combined effects of a vertical magnetic field and thermal radiation on natural convection of non-Newtonian fluids confined between circular and square concentric cylinders

    Chtaibi, Khalid | Dahani, Youssef | Amahmid, Abdelkhalek | Hasnaoui, Mohammed | Ben Hamed, Haïkel

    Journal of the Taiwan Institute of Chemical Engineers, Vol. 161 (2024), Iss. P.105538

    https://doi.org/10.1016/j.jtice.2024.105538 [Citations: 2]
  7. Numerical investigation of the accuracy, stability, and efficiency of lattice Boltzmann methods in simulating non-Newtonian flow

    Grasinger, Matthew | Overacker, Scott | Brigham, John

    Computers & Fluids, Vol. 166 (2018), Iss. P.253

    https://doi.org/10.1016/j.compfluid.2018.02.008 [Citations: 19]
  8. Lattice Boltzmann model for simulation of flow in intracranial aneurysms considering non-Newtonian effects

    Hosseini, S. A. | Huang, F. | Thévenin, D.

    Physics of Fluids, Vol. 34 (2022), Iss. 7

    https://doi.org/10.1063/5.0098383 [Citations: 18]
  9. A decoupling multiple-relaxation-time lattice Boltzmann flux solver for non-Newtonian power-law fluid flows

    Wang, Y. | Shu, C. | Yang, L.M. | Yuan, H.Z.

    Journal of Non-Newtonian Fluid Mechanics, Vol. 235 (2016), Iss. P.20

    https://doi.org/10.1016/j.jnnfm.2016.03.010 [Citations: 24]
  10. Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology

    Ba, Yan | Wang, Ningning | Liu, Haihu | Li, Qiang | He, Guoqiang

    Physical Review E, Vol. 97 (2018), Iss. 3

    https://doi.org/10.1103/PhysRevE.97.033307 [Citations: 15]
  11. Lattice boltzmann simulation of power-law fluids flow around a forced-oscillation circular cylinder

    Zhang, Huahai | Fu, Shaotong | Dou, Jingxi | Su, Weite | Wang, Limin

    Computers & Fluids, Vol. 277 (2024), Iss. P.106269

    https://doi.org/10.1016/j.compfluid.2024.106269 [Citations: 0]
  12. Investigation of pulp flow helicity in rotating and non-rotating grooves

    Jouybari, Nima F | Engberg, Birgitta | Persson, Johan | Berg, Jan-Erik

    Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 235 (2021), Iss. 6 P.2045

    https://doi.org/10.1177/09544089211027421 [Citations: 1]
  13. Capsules Rheology in Carreau–Yasuda Fluids

    Coclite, Alessandro | Coclite, Giuseppe | De Tommasi, Domenico

    Nanomaterials, Vol. 10 (2020), Iss. 11 P.2190

    https://doi.org/10.3390/nano10112190 [Citations: 6]
  14. Numerical simulations of polygonal particles settling within non-Newtonian fluids

    Jiao, Kaituo | Han, Dongxu | Li, Jingfa | Yu, Bo

    Physics of Fluids, Vol. 34 (2022), Iss. 7

    https://doi.org/10.1063/5.0096657 [Citations: 8]
  15. Numerical Simulation of Non-Newtonian Power-Law Fluid Flow in a Lid-Driven Skewed Cavity

    Thohura, Sharaban | Molla, Md. Mamun | Sarker, Md. Manirul Alam

    International Journal of Applied and Computational Mathematics, Vol. 5 (2019), Iss. 1

    https://doi.org/10.1007/s40819-018-0590-y [Citations: 18]
  16. An improved MRT-LBM for Herschel–Bulkley fluids with high Reynolds number

    Wu, Weiwei | Huang, Xiaodiao | Fang, Chenggang | Gao, Yang

    Numerical Heat Transfer, Part B: Fundamentals, Vol. 72 (2017), Iss. 6 P.409

    https://doi.org/10.1080/10407790.2017.1409521 [Citations: 7]
  17. Micro-flow investigation on laying process in Al2O3 stereolithography forming

    Wu, Weiwei | Deng, Xu | Ding, Shuang | Zhang, Yanjun | Tang, Bing | Shi, Binquan

    Physics of Fluids, Vol. 35 (2023), Iss. 3

    https://doi.org/10.1063/5.0141852 [Citations: 4]
  18. Stationary and time-dependent numerical approximation of the lid-driven cavity problem for power-law fluid flows at high Reynolds numbers using a stabilized finite element formulation of the VMS type

    Aguirre, A. | Castillo, E. | Cruchaga, M. | Codina, R. | Baiges, J.

    Journal of Non-Newtonian Fluid Mechanics, Vol. 257 (2018), Iss. P.22

    https://doi.org/10.1016/j.jnnfm.2018.03.014 [Citations: 28]
  19. A Graphics Process Unit-Based Multiple-Relaxation-Time Lattice Boltzmann Simulation of Non-Newtonian Fluid Flows in a Backward Facing Step

    Molla, Md. Mamun | Nag, Preetom | Thohura, Sharaban | Khan, Amirul

    Computation, Vol. 8 (2020), Iss. 3 P.83

    https://doi.org/10.3390/computation8030083 [Citations: 22]
  20. Numerical Computations of Non-Newtonian Fluid Flow in Hexagonal Cavity With a Square Obstacle: A Hybrid Mesh–Based Study

    Khan, Y. | Majeed, Afraz Hussain | Shahzad, Hasan | Awan, Farah Jabeen | Iqbal, Kaleem | Ajmal, Muhammad | Faraz, N.

    Frontiers in Physics, Vol. 10 (2022), Iss.

    https://doi.org/10.3389/fphy.2022.891163 [Citations: 5]
  21. Recent Advances in Computational Mechanics and Simulations

    Finite Element Computational Modelling of Non-Newtonian Fluids Using Anisotropic Mesh Adaptivity

    Singh, Neeraj Kr. | Bhutani, Gaurav

    2021

    https://doi.org/10.1007/978-981-15-8315-5_28 [Citations: 0]
  22. Two-relaxation-time lattice Boltzmann model of the velocity profiles and volumetric flow rate of generalized Newtonian fluids in a single-screw extruder

    Meng, Zhuo | Liu, Liguo | Zhang, Yujing | Sun, Yize

    AIP Advances, Vol. 14 (2024), Iss. 1

    https://doi.org/10.1063/5.0188122 [Citations: 0]
  23. Simplified lattice Boltzmann method for non‐Newtonian power‐law fluid flows

    Chen, Zhen | Shu, Chang

    International Journal for Numerical Methods in Fluids, Vol. 92 (2020), Iss. 1 P.38

    https://doi.org/10.1002/fld.4771 [Citations: 35]
  24. Effect mechanism of multiple obstacles on non-Newtonian flow in ceramics 3D printing (linear elements)

    Wu, Weiwei | Deng, Xu | Ding, Shuang | Zhu, Lin | Yu, Liang | Song, Aiping

    Ceramics International, Vol. 47 (2021), Iss. 21 P.29840

    https://doi.org/10.1016/j.ceramint.2021.07.157 [Citations: 2]
  25. Non-Newtonian power-law fluid flow over obstacles embedded inside a cavity

    Bisht, Manju | Kumar, Pradeep | Patil, Dhiraj V.

    Physics of Fluids, Vol. 33 (2021), Iss. 4

    https://doi.org/10.1063/5.0046655 [Citations: 18]
  26. Power-law fluid flow in driven enclosures with undulation using MRT-lattice Boltzmann method

    Bisht, Manju | Patil, Dhiraj V.

    Computers & Mathematics with Applications, Vol. 79 (2020), Iss. 1 P.100

    https://doi.org/10.1016/j.camwa.2017.09.006 [Citations: 13]
  27. Assessment of multiple relaxation time-lattice Boltzmann method framework for non-Newtonian fluid flow simulations

    Bisht, Manju | Patil, Dhiraj V.

    European Journal of Mechanics - B/Fluids, Vol. 85 (2021), Iss. P.322

    https://doi.org/10.1016/j.euromechflu.2020.10.005 [Citations: 24]
  28. A modified LBM for non-Newtonian effect of cement paste flow in 3D printing

    Wu, Weiwei | Huang, Xiaodiao | Li, Yuanyuan | Fang, Chenggang | Jiang, Xianhui

    Rapid Prototyping Journal, Vol. 25 (2019), Iss. 1 P.22

    https://doi.org/10.1108/RPJ-06-2017-0124 [Citations: 6]
  29. Investigations on the Droplet Impact onto a Spherical Surface with a High Density Ratio Multi-Relaxation Time Lattice-Boltzmann Model

    Zhang, Duo | Papadikis, K. | Gu, Sai

    Communications in Computational Physics, Vol. 16 (2014), Iss. 4 P.892

    https://doi.org/10.4208/cicp.210613.310314a [Citations: 24]
  30. Exploring the periodic behavior of the lid-driven cavity flow filled with a Bingham fluid

    Ferrari, Marco A. | Franco, Admilson T.

    Journal of Non-Newtonian Fluid Mechanics, Vol. 316 (2023), Iss. P.105030

    https://doi.org/10.1016/j.jnnfm.2023.105030 [Citations: 8]
  31. Numerical simulation of elliptical particles sedimentation in power-law fluid using the improved smoothed profile-lattice Boltzmann method

    Rouhani Tazangi, Hamideh | Soltani Goharrizi, Ataallah | Jahanshahi Javaran, Ebrahim

    Particulate Science and Technology, Vol. 39 (2021), Iss. 5 P.569

    https://doi.org/10.1080/02726351.2020.1788680 [Citations: 5]
  32. Deformation and breakup of a confined droplet in shear flows with power-law rheology

    Wang, Ningning | Liu, Haihu | Zhang, Chuhua

    Journal of Rheology, Vol. 61 (2017), Iss. 4 P.741

    https://doi.org/10.1122/1.4984757 [Citations: 35]
  33. Effect research of cement block on paste flow for 3D cement printing based on an improved lattice Boltzmann method

    Wu, Weiwei | Wang, Zhongyu | Ding, Shuang | Song, Aiping

    Construction and Building Materials, Vol. 277 (2021), Iss. P.122272

    https://doi.org/10.1016/j.conbuildmat.2021.122272 [Citations: 1]
  34. Lattice Boltzmann simulation of cross-linked polymer gel injection in porous media

    Kamel Targhi, Elahe | Emami Niri, Mohammad | Rasaei, Mohammad Reza | Zitha, Pacelli L. J.

    Journal of Petroleum Exploration and Production Technology, Vol. 14 (2024), Iss. 8-9 P.2509

    https://doi.org/10.1007/s13202-024-01837-0 [Citations: 0]
  35. GPU accelerated simulations of three-dimensional flow of power-law fluids in a driven cube

    Jin, K. | Vanka, S.P. | Agarwal, R.K. | Thomas, B.G.

    International Journal of Computational Fluid Dynamics, Vol. 31 (2017), Iss. 1 P.36

    https://doi.org/10.1080/10618562.2016.1270449 [Citations: 5]
  36. Hydrodynamic drag reduction in ribbed microchannel with infused non-Newtonian lubricants

    R. Nair, Adarsh | Chandran, K. Nandakumar | Ranjith, S. Kumar

    Physics of Fluids, Vol. 36 (2024), Iss. 1

    https://doi.org/10.1063/5.0185112 [Citations: 1]
  37. Simulation of High-Viscosity Generalized Newtonian Fluid Flows in the Mixing Section of a Screw Extruder Using the Lattice Boltzmann Model

    Liu, Liguo | Meng, Zhuo | Zhang, Yujing | Sun, Yize

    ACS Omega, Vol. 8 (2023), Iss. 50 P.47991

    https://doi.org/10.1021/acsomega.3c06663 [Citations: 0]