Year: 2014
Communications in Computational Physics, Vol. 15 (2014), Iss. 2 : pp. 487–505
Abstract
In this paper, we study a lattice Boltzmann method for the advection-diffusion equation with Neumann boundary conditions on general boundaries. A
novel mass conservative scheme is introduced for implementing such boundary conditions, and is analyzed both theoretically and numerically.
Second order convergence is predicted by the theoretical analysis, and numerical
investigations show that the convergence is at or close to the predicted rate. The numerical investigations include time-dependent problems and a steady-state diffusion
problem for computation of effective diffusion coefficients.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.161112.230713a
Communications in Computational Physics, Vol. 15 (2014), Iss. 2 : pp. 487–505
Published online: 2014-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 19
-
Large-Scale Statistical Learning for Mass Transport Prediction in Porous Materials Using 90,000 Artificially Generated Microstructures
Prifling, Benedikt | Röding, Magnus | Townsend, Philip | Neumann, Matthias | Schmidt, VolkerFrontiers in Materials, Vol. 8 (2021), Iss.
https://doi.org/10.3389/fmats.2021.786502 [Citations: 27] -
Local boundary reflections in lattice Boltzmann schemes: Spurious boundary layers and their impact on the velocity, diffusion and dispersion
Ginzburg, Irina | Roux, Laetitia | Silva, GoncaloComptes Rendus. Mécanique, Vol. 343 (2015), Iss. 10-11 P.518
https://doi.org/10.1016/j.crme.2015.03.004 [Citations: 20] -
Boundary condition at a two-phase interface in the lattice Boltzmann method for the convection-diffusion equation
Yoshida, Hiroaki | Kobayashi, Takayuki | Hayashi, Hidemitsu | Kinjo, Tomoyuki | Washizu, Hitoshi | Fukuzawa, KenjiPhysical Review E, Vol. 90 (2014), Iss. 1
https://doi.org/10.1103/PhysRevE.90.013303 [Citations: 43] -
Second-order curved boundary treatments of the lattice Boltzmann method for convection–diffusion equations
Huang, Juntao | Hu, Zexi | Yong, Wen-AnJournal of Computational Physics, Vol. 310 (2016), Iss. P.26
https://doi.org/10.1016/j.jcp.2016.01.008 [Citations: 34] -
A Pore Scale Model for Osmotic Flow: Homogenization and Lattice Boltzmann Simulations
Gebäck, Tobias | Heintz, AlexeiTransport in Porous Media, Vol. 126 (2019), Iss. 1 P.161
https://doi.org/10.1007/s11242-017-0975-0 [Citations: 6] -
Spurious interface and boundary behaviour beyond physical solutions in lattice Boltzmann schemes
Ginzburg, Irina
Journal of Computational Physics, Vol. 431 (2021), Iss. P.109986
https://doi.org/10.1016/j.jcp.2020.109986 [Citations: 8] -
Characteristic-based finite-difference schemes for the simulation of convection–diffusion equation by the finite-difference-based lattice Boltzmann methods
Krivovichev, G. V.
International Journal of Computer Mathematics, Vol. 98 (2021), Iss. 10 P.1991
https://doi.org/10.1080/00207160.2020.1870680 [Citations: 0] -
Investigation of the Effect of the Tortuous Pore Structure on Water Diffusion through a Polymer Film Using Lattice Boltzmann Simulations
Gebäck, Tobias | Marucci, Mariagrazia | Boissier, Catherine | Arnehed, Johan | Heintz, AlexeiThe Journal of Physical Chemistry B, Vol. 119 (2015), Iss. 16 P.5220
https://doi.org/10.1021/acs.jpcb.5b01953 [Citations: 31] -
Inverse design of anisotropic spinodoid materials with prescribed diffusivity
Röding, Magnus | Wåhlstrand Skärström, Victor | Lorén, NiklasScientific Reports, Vol. 12 (2022), Iss. 1
https://doi.org/10.1038/s41598-022-21451-6 [Citations: 7] -
Local quantification of mesoporous silica microspheres using multiscale electron tomography and lattice Boltzmann simulations
Fijneman, Andreas J. | Goudzwaard, Maurits | Keizer, Arthur D.A. | Bomans, Paul H.H. | Gebäck, Tobias | Palmlöf, Magnus | Persson, Michael | Högblom, Joakim | de With, Gijsbertus | Friedrich, HeinerMicroporous and Mesoporous Materials, Vol. 302 (2020), Iss. P.110243
https://doi.org/10.1016/j.micromeso.2020.110243 [Citations: 3] -
Numerical approximations of Atangana–Baleanu Caputo derivative and its application
Yadav, Swati | Pandey, Rajesh K. | Shukla, Anil K.Chaos, Solitons & Fractals, Vol. 118 (2019), Iss. P.58
https://doi.org/10.1016/j.chaos.2018.11.009 [Citations: 51] -
Mixed bounce-back boundary scheme of the general propagation lattice Boltzmann method for advection-diffusion equations
Guo, Xiuya | Chai, Zhenhua | Pang, Shengyong | Zhao, Yong | Shi, BaochangPhysical Review E, Vol. 99 (2019), Iss. 6
https://doi.org/10.1103/PhysRevE.99.063316 [Citations: 8] -
A three‐dimensional statistical model for imaged microstructures of porous polymer films
BARMAN, S. | BOLIN, D.Journal of Microscopy, Vol. 269 (2018), Iss. 3 P.247
https://doi.org/10.1111/jmi.12623 [Citations: 15] -
An overview of the transport of liquid molecules through structured polymer films, barriers and composites – Experiments correlated to structure-based simulations
Gårdebjer, Sofie | Larsson, Mikael | Gebäck, Tobias | Skepö, Marie | Larsson, AnetteAdvances in Colloid and Interface Science, Vol. 256 (2018), Iss. P.48
https://doi.org/10.1016/j.cis.2018.05.004 [Citations: 14] -
The simulation of a two-dimensional (2D) transport problem in a rectangular region with Lattice Boltzmann method with two-relaxation-time
Sugiyanto, S | Hardyanto, W | Marwoto, PJournal of Physics: Conference Series, Vol. 983 (2018), Iss. P.012020
https://doi.org/10.1088/1742-6596/983/1/012020 [Citations: 0] -
Analysis of electro-osmotic flow in a microchannel with undulated surfaces
Yoshida, Hiroaki | Kinjo, Tomoyuki | Washizu, HitoshiComputers & Fluids, Vol. 124 (2016), Iss. P.237
https://doi.org/10.1016/j.compfluid.2015.05.001 [Citations: 19] -
Correlating 3D porous structure in polymer films with mass transport properties using FIB-SEM tomography
Fager, C. | Gebäck, T. | Hjärtstam, J. | Röding, M. | Olsson, A. | Lorén, N. | von Corswant, C. | Särkkä, A. | Olsson, E.Chemical Engineering Science: X, Vol. 12 (2021), Iss. P.100109
https://doi.org/10.1016/j.cesx.2021.100109 [Citations: 2] -
On Numerical Solution Of The Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu-Caputo Derivative
Partohaghighi, Mohammad | Inc, Mustafa | Bayram, Mustafa | Baleanu, DumitruOpen Physics, Vol. 17 (2019), Iss. 1 P.816
https://doi.org/10.1515/phys-2019-0085 [Citations: 14] -
Lattice model effects on the accuracy of the boundary condition implementations for the convection–diffusion lattice Boltzmann method
Zhang, Liangqi | Yang, Shiliang | Zeng, Zhong | Chew, Jia WeiComputers & Fluids, Vol. 176 (2018), Iss. P.153
https://doi.org/10.1016/j.compfluid.2018.08.029 [Citations: 10] -
Tessellation-based stochastic modelling of 3D coating structures imaged with FIB-SEM tomography
Townsend, Philip | Pingel, Torben Nilsson | Lorén, Niklas | Gebäck, Tobias | Olsson, Eva | Särkkä, Aila | Röding, MagnusComputational Materials Science, Vol. 197 (2021), Iss. P.110611
https://doi.org/10.1016/j.commatsci.2021.110611 [Citations: 0] -
Predicting permeability via statistical learning on higher-order microstructural information
Röding, Magnus | Ma, Zheng | Torquato, SalvatoreScientific Reports, Vol. 10 (2020), Iss. 1
https://doi.org/10.1038/s41598-020-72085-5 [Citations: 38] -
Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λbounce-back flux scheme
Ginzburg, Irina
Physical Review E, Vol. 95 (2017), Iss. 1
https://doi.org/10.1103/PhysRevE.95.013305 [Citations: 21] -
Truncation effect on Taylor–Aris dispersion in lattice Boltzmann schemes: Accuracy towards stability
Ginzburg, Irina | Roux, LaetitiaJournal of Computational Physics, Vol. 299 (2015), Iss. P.974
https://doi.org/10.1016/j.jcp.2015.07.017 [Citations: 26] -
Modeling of electrokinetic reactive transport in micropore using a coupled lattice Boltzmann method
Zhang, Li | Wang, MoranJournal of Geophysical Research: Solid Earth, Vol. 120 (2015), Iss. 5 P.2877
https://doi.org/10.1002/2014JB011812 [Citations: 27] -
Multiple relaxation time lattice Boltzmann schemes for advection-diffusion equations with application to radar image processing
Michelet, Jordan | Tekitek, Mohamed Mahdi | Berthier, MichelJournal of Computational Physics, Vol. 471 (2022), Iss. P.111612
https://doi.org/10.1016/j.jcp.2022.111612 [Citations: 10] -
Numerical Solution of Two-Dimensional Solute Transport System Using Operational Matrices
Jaiswal, Shubham | Chopra, Manish | Das, S.Transport in Porous Media, Vol. 122 (2018), Iss. 1 P.1
https://doi.org/10.1007/s11242-017-0986-x [Citations: 6] -
Probe diffusion in phase-separated bicontinuous biopolymer gels
Wassén, Sophia | Bordes, Romain | Gebäck, Tobias | Bernin, Diana | Schuster, Erich | Lorén, Niklas | Hermansson, Anne-MarieSoft Matter, Vol. 10 (2014), Iss. 41 P.8276
https://doi.org/10.1039/C4SM01513D [Citations: 31] -
Mass-balance and locality versus accuracy with the new boundary and interface-conjugate approaches in advection-diffusion lattice Boltzmann method
Ginzburg, Irina | Silva, GonçaloPhysics of Fluids, Vol. 33 (2021), Iss. 5
https://doi.org/10.1063/5.0047210 [Citations: 10] -
Modeling Colloidal Particle Aggregation Using Cluster Aggregation with Multiple Particle Interactions
Antonsson, Jakob | Hamngren Blomqvist, Charlotte | Olsson, Eva | Gebäck, Tobias | Särkkä, AilaThe Journal of Physical Chemistry B, Vol. 128 (2024), Iss. 18 P.4513
https://doi.org/10.1021/acs.jpcb.3c07992 [Citations: 1] -
Stochastic modelling of 3D fiber structures imaged with X-ray microtomography
Townsend, Philip | Larsson, Emanuel | Karlson, Tomas | Hall, Stephen A. | Lundman, Malin | Bergström, Per | Hanson, Charlotta | Lorén, Niklas | Gebäck, Tobias | Särkkä, Aila | Röding, MagnusComputational Materials Science, Vol. 194 (2021), Iss. P.110433
https://doi.org/10.1016/j.commatsci.2021.110433 [Citations: 9] -
Computational high-throughput screening of fluid permeability in heterogeneous fiber materials
Röding, Magnus | Schuster, Erich | Logg, Katarina | Lundman, Malin | Bergström, Per | Hanson, Charlotta | Gebäck, Tobias | Lorén, NiklasSoft Matter, Vol. 12 (2016), Iss. 29 P.6293
https://doi.org/10.1039/C6SM01213B [Citations: 12] -
Steady-state two-relaxation-time lattice Boltzmann formulation for transport and flow, closed with the compact multi-reflection boundary and interface-conjugate schemes
Ginzburg, Irina
Journal of Computational Science, Vol. 54 (2021), Iss. P.101215
https://doi.org/10.1016/j.jocs.2020.101215 [Citations: 14] -
Carbon Nanotube Length Governs the Viscoelasticity and Permeability of Buckypaper
Shen, Zhiqiang | Röding, Magnus | Kröger, Martin | Li, YingPolymers, Vol. 9 (2017), Iss. 4 P.115
https://doi.org/10.3390/polym9040115 [Citations: 21] -
Functional regression-based fluid permeability prediction in monodisperse sphere packings from isotropic two-point correlation functions
Röding, Magnus | Svensson, Peter | Lorén, NiklasComputational Materials Science, Vol. 134 (2017), Iss. P.126
https://doi.org/10.1016/j.commatsci.2017.03.042 [Citations: 6] -
Lattice Boltzmann simulations of diffusion through native and steam-exploded softwood bordered pits
Kvist, Patric | Therning, Adam | Gebäck, Tobias | Rasmuson, AndersWood Science and Technology, Vol. 51 (2017), Iss. 6 P.1261
https://doi.org/10.1007/s00226-017-0938-1 [Citations: 5] -
Prediction of diffusive transport through polymer films from characteristics of the pore geometry
Barman, Sandra | Rootzén, Holger | Bolin, DavidAIChE Journal, Vol. 65 (2019), Iss. 1 P.446
https://doi.org/10.1002/aic.16391 [Citations: 26] -
Applicability of the lattice Boltzmann method to determine the ohmic resistance in equivalent resistor connections
Espinoza-Andaluz, Mayken | Barzola, Julio | Guarochico-Moreira, Víctor H. | Andersson, MartinJournal of Physics: Conference Series, Vol. 936 (2017), Iss. 1 P.012019
https://doi.org/10.1088/1742-6596/936/1/012019 [Citations: 0] -
Numerical Solution of One-Dimensional Finite Solute Transport System with First Type Source Boundary Condition
Jaiswal, Shubham | Chopra, Manish | Ong, S. H. | Das, S.International Journal of Applied and Computational Mathematics, Vol. 3 (2017), Iss. 4 P.3035
https://doi.org/10.1007/s40819-016-0280-6 [Citations: 3] -
A multi-scale model for diffusion of large molecules in steam-exploded wood
Kvist, Patric | Gebäck, Tobias | Rasmuson, AndersWood Science and Technology, Vol. 54 (2020), Iss. 4 P.821
https://doi.org/10.1007/s00226-020-01185-2 [Citations: 4] -
Lattice Boltzmann simulation of advection-diffusion of chemicals and applications to blood flow
Zhang, Hengdi | Misbah, ChaouqiComputers & Fluids, Vol. 187 (2019), Iss. P.46
https://doi.org/10.1016/j.compfluid.2019.04.018 [Citations: 13] -
Lattice Boltzmann simulations of diffusion in steam-exploded wood
Kvist, Patric | Gebäck, Tobias | Muzamal, Muhammad | Rasmuson, AndersWood Science and Technology, Vol. 53 (2019), Iss. 4 P.855
https://doi.org/10.1007/s00226-019-01107-x [Citations: 5] -
A dissolution model of alite coupling surface topography and ions transport under different hydrodynamics conditions at microscale
Chen, Jiayi | Martin, Pablo | Xu, Zhiyuan | Manzano, Hegoi | Dolado, Jorge S. | Ye, GuangCement and Concrete Research, Vol. 142 (2021), Iss. P.106377
https://doi.org/10.1016/j.cemconres.2021.106377 [Citations: 6] -
Super-resolving microscopy images of Li-ion electrodes for fine-feature quantification using generative adversarial networks
Furat, Orkun | Finegan, Donal P. | Yang, Zhenzhen | Kirstein, Tom | Smith, Kandler | Schmidt, Volkernpj Computational Materials, Vol. 8 (2022), Iss. 1
https://doi.org/10.1038/s41524-022-00749-z [Citations: 12] -
Dirichlet and Neumann boundary conditions for a lattice Boltzmann scheme for linear elastic solids on arbitrary domains
Boolakee, Oliver | Geier, Martin | De Lorenzis, LauraComputer Methods in Applied Mechanics and Engineering, Vol. 415 (2023), Iss. P.116225
https://doi.org/10.1016/j.cma.2023.116225 [Citations: 3] -
Second-order curved interface treatments of the lattice Boltzmann method for convection-diffusion equations with conjugate interfacial conditions
Hu, Ze-Xi | Huang, Juntao | Huang, Wei-Xi | Cui, Gui-XiangComputers & Fluids, Vol. 144 (2017), Iss. P.60
https://doi.org/10.1016/j.compfluid.2016.12.003 [Citations: 8] -
Lattice Boltzmann method for convection-diffusion equations with general interfacial conditions
Hu, Zexi | Huang, Juntao | Yong, Wen-AnPhysical Review E, Vol. 93 (2016), Iss. 4
https://doi.org/10.1103/PhysRevE.93.043320 [Citations: 20] -
Free surface Neumann boundary condition for the advection–diffusion lattice Boltzmann method
Markl, Matthias | Körner, CarolinJournal of Computational Physics, Vol. 301 (2015), Iss. P.230
https://doi.org/10.1016/j.jcp.2015.08.033 [Citations: 10] -
Computational simulation data using the Lattice Boltzmann method to generate correlations for gas diffusion layer parameters
Espinoza-Andaluz, Mayken | Reyna, Raul | Qi, Yuanxin | Li, Tingshuai | Andersson, MartinData in Brief, Vol. 27 (2019), Iss. P.104688
https://doi.org/10.1016/j.dib.2019.104688 [Citations: 1] -
Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries
Silva, Goncalo
Physical Review E, Vol. 98 (2018), Iss. 2
https://doi.org/10.1103/PhysRevE.98.023302 [Citations: 24] -
Consistent second-order boundary implementations for convection-diffusion lattice Boltzmann method
Zhang, Liangqi | Yang, Shiliang | Zeng, Zhong | Chew, Jia WeiPhysical Review E, Vol. 97 (2018), Iss. 2
https://doi.org/10.1103/PhysRevE.97.023302 [Citations: 20]