A Lattice Boltzmann Method for the Advection-Diffusion Equation with Neumann Boundary Conditions

A Lattice Boltzmann Method for the Advection-Diffusion Equation with Neumann Boundary Conditions

Year:    2014

Communications in Computational Physics, Vol. 15 (2014), Iss. 2 : pp. 487–505

Abstract

In this paper, we study a lattice Boltzmann method for the advection-diffusion equation with Neumann boundary conditions on general boundaries. A novel mass conservative scheme is introduced for implementing such boundary conditions, and is analyzed both theoretically and numerically.
Second order convergence is predicted by the theoretical analysis, and numerical investigations show that the convergence is at or close to the predicted rate. The numerical investigations include time-dependent problems and a steady-state diffusion problem for computation of effective diffusion coefficients.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.161112.230713a

Communications in Computational Physics, Vol. 15 (2014), Iss. 2 : pp. 487–505

Published online:    2014-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    19

Keywords:   

  1. Large-Scale Statistical Learning for Mass Transport Prediction in Porous Materials Using 90,000 Artificially Generated Microstructures

    Prifling, Benedikt | Röding, Magnus | Townsend, Philip | Neumann, Matthias | Schmidt, Volker

    Frontiers in Materials, Vol. 8 (2021), Iss.

    https://doi.org/10.3389/fmats.2021.786502 [Citations: 27]
  2. Local boundary reflections in lattice Boltzmann schemes: Spurious boundary layers and their impact on the velocity, diffusion and dispersion

    Ginzburg, Irina | Roux, Laetitia | Silva, Goncalo

    Comptes Rendus. Mécanique, Vol. 343 (2015), Iss. 10-11 P.518

    https://doi.org/10.1016/j.crme.2015.03.004 [Citations: 20]
  3. Boundary condition at a two-phase interface in the lattice Boltzmann method for the convection-diffusion equation

    Yoshida, Hiroaki | Kobayashi, Takayuki | Hayashi, Hidemitsu | Kinjo, Tomoyuki | Washizu, Hitoshi | Fukuzawa, Kenji

    Physical Review E, Vol. 90 (2014), Iss. 1

    https://doi.org/10.1103/PhysRevE.90.013303 [Citations: 43]
  4. Second-order curved boundary treatments of the lattice Boltzmann method for convection–diffusion equations

    Huang, Juntao | Hu, Zexi | Yong, Wen-An

    Journal of Computational Physics, Vol. 310 (2016), Iss. P.26

    https://doi.org/10.1016/j.jcp.2016.01.008 [Citations: 34]
  5. A Pore Scale Model for Osmotic Flow: Homogenization and Lattice Boltzmann Simulations

    Gebäck, Tobias | Heintz, Alexei

    Transport in Porous Media, Vol. 126 (2019), Iss. 1 P.161

    https://doi.org/10.1007/s11242-017-0975-0 [Citations: 6]
  6. Spurious interface and boundary behaviour beyond physical solutions in lattice Boltzmann schemes

    Ginzburg, Irina

    Journal of Computational Physics, Vol. 431 (2021), Iss. P.109986

    https://doi.org/10.1016/j.jcp.2020.109986 [Citations: 8]
  7. Characteristic-based finite-difference schemes for the simulation of convection–diffusion equation by the finite-difference-based lattice Boltzmann methods

    Krivovichev, G. V.

    International Journal of Computer Mathematics, Vol. 98 (2021), Iss. 10 P.1991

    https://doi.org/10.1080/00207160.2020.1870680 [Citations: 0]
  8. Investigation of the Effect of the Tortuous Pore Structure on Water Diffusion through a Polymer Film Using Lattice Boltzmann Simulations

    Gebäck, Tobias | Marucci, Mariagrazia | Boissier, Catherine | Arnehed, Johan | Heintz, Alexei

    The Journal of Physical Chemistry B, Vol. 119 (2015), Iss. 16 P.5220

    https://doi.org/10.1021/acs.jpcb.5b01953 [Citations: 31]
  9. Inverse design of anisotropic spinodoid materials with prescribed diffusivity

    Röding, Magnus | Wåhlstrand Skärström, Victor | Lorén, Niklas

    Scientific Reports, Vol. 12 (2022), Iss. 1

    https://doi.org/10.1038/s41598-022-21451-6 [Citations: 7]
  10. Local quantification of mesoporous silica microspheres using multiscale electron tomography and lattice Boltzmann simulations

    Fijneman, Andreas J. | Goudzwaard, Maurits | Keizer, Arthur D.A. | Bomans, Paul H.H. | Gebäck, Tobias | Palmlöf, Magnus | Persson, Michael | Högblom, Joakim | de With, Gijsbertus | Friedrich, Heiner

    Microporous and Mesoporous Materials, Vol. 302 (2020), Iss. P.110243

    https://doi.org/10.1016/j.micromeso.2020.110243 [Citations: 3]
  11. Numerical approximations of Atangana–Baleanu Caputo derivative and its application

    Yadav, Swati | Pandey, Rajesh K. | Shukla, Anil K.

    Chaos, Solitons & Fractals, Vol. 118 (2019), Iss. P.58

    https://doi.org/10.1016/j.chaos.2018.11.009 [Citations: 51]
  12. Mixed bounce-back boundary scheme of the general propagation lattice Boltzmann method for advection-diffusion equations

    Guo, Xiuya | Chai, Zhenhua | Pang, Shengyong | Zhao, Yong | Shi, Baochang

    Physical Review E, Vol. 99 (2019), Iss. 6

    https://doi.org/10.1103/PhysRevE.99.063316 [Citations: 8]
  13. A three‐dimensional statistical model for imaged microstructures of porous polymer films

    BARMAN, S. | BOLIN, D.

    Journal of Microscopy, Vol. 269 (2018), Iss. 3 P.247

    https://doi.org/10.1111/jmi.12623 [Citations: 15]
  14. An overview of the transport of liquid molecules through structured polymer films, barriers and composites – Experiments correlated to structure-based simulations

    Gårdebjer, Sofie | Larsson, Mikael | Gebäck, Tobias | Skepö, Marie | Larsson, Anette

    Advances in Colloid and Interface Science, Vol. 256 (2018), Iss. P.48

    https://doi.org/10.1016/j.cis.2018.05.004 [Citations: 14]
  15. The simulation of a two-dimensional (2D) transport problem in a rectangular region with Lattice Boltzmann method with two-relaxation-time

    Sugiyanto, S | Hardyanto, W | Marwoto, P

    Journal of Physics: Conference Series, Vol. 983 (2018), Iss. P.012020

    https://doi.org/10.1088/1742-6596/983/1/012020 [Citations: 0]
  16. Analysis of electro-osmotic flow in a microchannel with undulated surfaces

    Yoshida, Hiroaki | Kinjo, Tomoyuki | Washizu, Hitoshi

    Computers & Fluids, Vol. 124 (2016), Iss. P.237

    https://doi.org/10.1016/j.compfluid.2015.05.001 [Citations: 19]
  17. Correlating 3D porous structure in polymer films with mass transport properties using FIB-SEM tomography

    Fager, C. | Gebäck, T. | Hjärtstam, J. | Röding, M. | Olsson, A. | Lorén, N. | von Corswant, C. | Särkkä, A. | Olsson, E.

    Chemical Engineering Science: X, Vol. 12 (2021), Iss. P.100109

    https://doi.org/10.1016/j.cesx.2021.100109 [Citations: 2]
  18. On Numerical Solution Of The Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu-Caputo Derivative

    Partohaghighi, Mohammad | Inc, Mustafa | Bayram, Mustafa | Baleanu, Dumitru

    Open Physics, Vol. 17 (2019), Iss. 1 P.816

    https://doi.org/10.1515/phys-2019-0085 [Citations: 14]
  19. Lattice model effects on the accuracy of the boundary condition implementations for the convection–diffusion lattice Boltzmann method

    Zhang, Liangqi | Yang, Shiliang | Zeng, Zhong | Chew, Jia Wei

    Computers & Fluids, Vol. 176 (2018), Iss. P.153

    https://doi.org/10.1016/j.compfluid.2018.08.029 [Citations: 10]
  20. Tessellation-based stochastic modelling of 3D coating structures imaged with FIB-SEM tomography

    Townsend, Philip | Pingel, Torben Nilsson | Lorén, Niklas | Gebäck, Tobias | Olsson, Eva | Särkkä, Aila | Röding, Magnus

    Computational Materials Science, Vol. 197 (2021), Iss. P.110611

    https://doi.org/10.1016/j.commatsci.2021.110611 [Citations: 0]
  21. Predicting permeability via statistical learning on higher-order microstructural information

    Röding, Magnus | Ma, Zheng | Torquato, Salvatore

    Scientific Reports, Vol. 10 (2020), Iss. 1

    https://doi.org/10.1038/s41598-020-72085-5 [Citations: 38]
  22. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λbounce-back flux scheme

    Ginzburg, Irina

    Physical Review E, Vol. 95 (2017), Iss. 1

    https://doi.org/10.1103/PhysRevE.95.013305 [Citations: 21]
  23. Truncation effect on Taylor–Aris dispersion in lattice Boltzmann schemes: Accuracy towards stability

    Ginzburg, Irina | Roux, Laetitia

    Journal of Computational Physics, Vol. 299 (2015), Iss. P.974

    https://doi.org/10.1016/j.jcp.2015.07.017 [Citations: 26]
  24. Modeling of electrokinetic reactive transport in micropore using a coupled lattice Boltzmann method

    Zhang, Li | Wang, Moran

    Journal of Geophysical Research: Solid Earth, Vol. 120 (2015), Iss. 5 P.2877

    https://doi.org/10.1002/2014JB011812 [Citations: 27]
  25. Multiple relaxation time lattice Boltzmann schemes for advection-diffusion equations with application to radar image processing

    Michelet, Jordan | Tekitek, Mohamed Mahdi | Berthier, Michel

    Journal of Computational Physics, Vol. 471 (2022), Iss. P.111612

    https://doi.org/10.1016/j.jcp.2022.111612 [Citations: 10]
  26. Numerical Solution of Two-Dimensional Solute Transport System Using Operational Matrices

    Jaiswal, Shubham | Chopra, Manish | Das, S.

    Transport in Porous Media, Vol. 122 (2018), Iss. 1 P.1

    https://doi.org/10.1007/s11242-017-0986-x [Citations: 6]
  27. Probe diffusion in phase-separated bicontinuous biopolymer gels

    Wassén, Sophia | Bordes, Romain | Gebäck, Tobias | Bernin, Diana | Schuster, Erich | Lorén, Niklas | Hermansson, Anne-Marie

    Soft Matter, Vol. 10 (2014), Iss. 41 P.8276

    https://doi.org/10.1039/C4SM01513D [Citations: 31]
  28. Mass-balance and locality versus accuracy with the new boundary and interface-conjugate approaches in advection-diffusion lattice Boltzmann method

    Ginzburg, Irina | Silva, Gonçalo

    Physics of Fluids, Vol. 33 (2021), Iss. 5

    https://doi.org/10.1063/5.0047210 [Citations: 10]
  29. Modeling Colloidal Particle Aggregation Using Cluster Aggregation with Multiple Particle Interactions

    Antonsson, Jakob | Hamngren Blomqvist, Charlotte | Olsson, Eva | Gebäck, Tobias | Särkkä, Aila

    The Journal of Physical Chemistry B, Vol. 128 (2024), Iss. 18 P.4513

    https://doi.org/10.1021/acs.jpcb.3c07992 [Citations: 1]
  30. Stochastic modelling of 3D fiber structures imaged with X-ray microtomography

    Townsend, Philip | Larsson, Emanuel | Karlson, Tomas | Hall, Stephen A. | Lundman, Malin | Bergström, Per | Hanson, Charlotta | Lorén, Niklas | Gebäck, Tobias | Särkkä, Aila | Röding, Magnus

    Computational Materials Science, Vol. 194 (2021), Iss. P.110433

    https://doi.org/10.1016/j.commatsci.2021.110433 [Citations: 9]
  31. Computational high-throughput screening of fluid permeability in heterogeneous fiber materials

    Röding, Magnus | Schuster, Erich | Logg, Katarina | Lundman, Malin | Bergström, Per | Hanson, Charlotta | Gebäck, Tobias | Lorén, Niklas

    Soft Matter, Vol. 12 (2016), Iss. 29 P.6293

    https://doi.org/10.1039/C6SM01213B [Citations: 12]
  32. Steady-state two-relaxation-time lattice Boltzmann formulation for transport and flow, closed with the compact multi-reflection boundary and interface-conjugate schemes

    Ginzburg, Irina

    Journal of Computational Science, Vol. 54 (2021), Iss. P.101215

    https://doi.org/10.1016/j.jocs.2020.101215 [Citations: 14]
  33. Carbon Nanotube Length Governs the Viscoelasticity and Permeability of Buckypaper

    Shen, Zhiqiang | Röding, Magnus | Kröger, Martin | Li, Ying

    Polymers, Vol. 9 (2017), Iss. 4 P.115

    https://doi.org/10.3390/polym9040115 [Citations: 21]
  34. Functional regression-based fluid permeability prediction in monodisperse sphere packings from isotropic two-point correlation functions

    Röding, Magnus | Svensson, Peter | Lorén, Niklas

    Computational Materials Science, Vol. 134 (2017), Iss. P.126

    https://doi.org/10.1016/j.commatsci.2017.03.042 [Citations: 6]
  35. Lattice Boltzmann simulations of diffusion through native and steam-exploded softwood bordered pits

    Kvist, Patric | Therning, Adam | Gebäck, Tobias | Rasmuson, Anders

    Wood Science and Technology, Vol. 51 (2017), Iss. 6 P.1261

    https://doi.org/10.1007/s00226-017-0938-1 [Citations: 5]
  36. Prediction of diffusive transport through polymer films from characteristics of the pore geometry

    Barman, Sandra | Rootzén, Holger | Bolin, David

    AIChE Journal, Vol. 65 (2019), Iss. 1 P.446

    https://doi.org/10.1002/aic.16391 [Citations: 26]
  37. Applicability of the lattice Boltzmann method to determine the ohmic resistance in equivalent resistor connections

    Espinoza-Andaluz, Mayken | Barzola, Julio | Guarochico-Moreira, Víctor H. | Andersson, Martin

    Journal of Physics: Conference Series, Vol. 936 (2017), Iss. 1 P.012019

    https://doi.org/10.1088/1742-6596/936/1/012019 [Citations: 0]
  38. Numerical Solution of One-Dimensional Finite Solute Transport System with First Type Source Boundary Condition

    Jaiswal, Shubham | Chopra, Manish | Ong, S. H. | Das, S.

    International Journal of Applied and Computational Mathematics, Vol. 3 (2017), Iss. 4 P.3035

    https://doi.org/10.1007/s40819-016-0280-6 [Citations: 3]
  39. A multi-scale model for diffusion of large molecules in steam-exploded wood

    Kvist, Patric | Gebäck, Tobias | Rasmuson, Anders

    Wood Science and Technology, Vol. 54 (2020), Iss. 4 P.821

    https://doi.org/10.1007/s00226-020-01185-2 [Citations: 4]
  40. Lattice Boltzmann simulation of advection-diffusion of chemicals and applications to blood flow

    Zhang, Hengdi | Misbah, Chaouqi

    Computers & Fluids, Vol. 187 (2019), Iss. P.46

    https://doi.org/10.1016/j.compfluid.2019.04.018 [Citations: 13]
  41. Lattice Boltzmann simulations of diffusion in steam-exploded wood

    Kvist, Patric | Gebäck, Tobias | Muzamal, Muhammad | Rasmuson, Anders

    Wood Science and Technology, Vol. 53 (2019), Iss. 4 P.855

    https://doi.org/10.1007/s00226-019-01107-x [Citations: 5]
  42. A dissolution model of alite coupling surface topography and ions transport under different hydrodynamics conditions at microscale

    Chen, Jiayi | Martin, Pablo | Xu, Zhiyuan | Manzano, Hegoi | Dolado, Jorge S. | Ye, Guang

    Cement and Concrete Research, Vol. 142 (2021), Iss. P.106377

    https://doi.org/10.1016/j.cemconres.2021.106377 [Citations: 6]
  43. Super-resolving microscopy images of Li-ion electrodes for fine-feature quantification using generative adversarial networks

    Furat, Orkun | Finegan, Donal P. | Yang, Zhenzhen | Kirstein, Tom | Smith, Kandler | Schmidt, Volker

    npj Computational Materials, Vol. 8 (2022), Iss. 1

    https://doi.org/10.1038/s41524-022-00749-z [Citations: 12]
  44. Dirichlet and Neumann boundary conditions for a lattice Boltzmann scheme for linear elastic solids on arbitrary domains

    Boolakee, Oliver | Geier, Martin | De Lorenzis, Laura

    Computer Methods in Applied Mechanics and Engineering, Vol. 415 (2023), Iss. P.116225

    https://doi.org/10.1016/j.cma.2023.116225 [Citations: 3]
  45. Second-order curved interface treatments of the lattice Boltzmann method for convection-diffusion equations with conjugate interfacial conditions

    Hu, Ze-Xi | Huang, Juntao | Huang, Wei-Xi | Cui, Gui-Xiang

    Computers & Fluids, Vol. 144 (2017), Iss. P.60

    https://doi.org/10.1016/j.compfluid.2016.12.003 [Citations: 8]
  46. Lattice Boltzmann method for convection-diffusion equations with general interfacial conditions

    Hu, Zexi | Huang, Juntao | Yong, Wen-An

    Physical Review E, Vol. 93 (2016), Iss. 4

    https://doi.org/10.1103/PhysRevE.93.043320 [Citations: 20]
  47. Free surface Neumann boundary condition for the advection–diffusion lattice Boltzmann method

    Markl, Matthias | Körner, Carolin

    Journal of Computational Physics, Vol. 301 (2015), Iss. P.230

    https://doi.org/10.1016/j.jcp.2015.08.033 [Citations: 10]
  48. Computational simulation data using the Lattice Boltzmann method to generate correlations for gas diffusion layer parameters

    Espinoza-Andaluz, Mayken | Reyna, Raul | Qi, Yuanxin | Li, Tingshuai | Andersson, Martin

    Data in Brief, Vol. 27 (2019), Iss. P.104688

    https://doi.org/10.1016/j.dib.2019.104688 [Citations: 1]
  49. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries

    Silva, Goncalo

    Physical Review E, Vol. 98 (2018), Iss. 2

    https://doi.org/10.1103/PhysRevE.98.023302 [Citations: 24]
  50. Consistent second-order boundary implementations for convection-diffusion lattice Boltzmann method

    Zhang, Liangqi | Yang, Shiliang | Zeng, Zhong | Chew, Jia Wei

    Physical Review E, Vol. 97 (2018), Iss. 2

    https://doi.org/10.1103/PhysRevE.97.023302 [Citations: 20]