Generalized Multiscale Finite Element Methods. Nonlinear Elliptic Equations

Generalized Multiscale Finite Element Methods. Nonlinear Elliptic Equations

Year:    2014

Communications in Computational Physics, Vol. 15 (2014), Iss. 3 : pp. 733–755

Abstract

In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.020313.041013a

Communications in Computational Physics, Vol. 15 (2014), Iss. 3 : pp. 733–755

Published online:    2014-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    23

Keywords:   

  1. Multilevel approximate Bayesian approaches for flows in highly heterogeneous porous media and their applications

    Guha, Nilabja | Tan, Xiaosi

    Journal of Computational and Applied Mathematics, Vol. 317 (2017), Iss. P.700

    https://doi.org/10.1016/j.cam.2016.10.008 [Citations: 9]
  2. Manifold Learning and Nonlinear Homogenization

    Chen, Shi | Li, Qin | Lu, Jianfeng | Wright, Stephen J.

    Multiscale Modeling & Simulation, Vol. 20 (2022), Iss. 3 P.1093

    https://doi.org/10.1137/20M1377771 [Citations: 1]
  3. Computation of effective resistivity in materials with microinclusions by a heterogeneous multiscale finite element method

    Epov, M. I. | Shurina, E. P. | Kutischeva, A. Yu.

    Physical Mesomechanics, Vol. 20 (2017), Iss. 4 P.407

    https://doi.org/10.1134/S1029959917040051 [Citations: 8]
  4. A high-order three-scale approach for predicting thermo-mechanical properties of porous materials with interior surface radiation

    Yang, Zhiqiang | Sun, Yi | Guan, Tianyu | Dong, Hao

    Computers & Mathematics with Applications, Vol. 79 (2020), Iss. 9 P.2742

    https://doi.org/10.1016/j.camwa.2019.12.009 [Citations: 5]
  5. Multiscale modeling of heat and mass transfer in fractured media for enhanced geothermal systems applications

    Vasilyeva, Maria | Babaei, Masoud | Chung, Eric T. | Spiridonov, Denis

    Applied Mathematical Modelling, Vol. 67 (2019), Iss. P.159

    https://doi.org/10.1016/j.apm.2018.10.025 [Citations: 47]
  6. Mixed GMsFEM for second order elliptic problem in perforated domains

    Chung, Eric T. | Leung, Wing Tat | Vasilyeva, Maria

    Journal of Computational and Applied Mathematics, Vol. 304 (2016), Iss. P.84

    https://doi.org/10.1016/j.cam.2016.02.038 [Citations: 33]
  7. Generalized multiscale finite element method for a strain-limiting nonlinear elasticity model

    Fu, Shubin | Chung, Eric | Mai, Tina

    Journal of Computational and Applied Mathematics, Vol. 359 (2019), Iss. P.153

    https://doi.org/10.1016/j.cam.2019.03.047 [Citations: 23]
  8. Multiscale model reduction technique for fluid flows with heterogeneous porous inclusions

    Vasilyeva, Maria | Mallikarjunaiah, S.M. | Palaniappan, D.

    Journal of Computational and Applied Mathematics, Vol. 424 (2023), Iss. P.114976

    https://doi.org/10.1016/j.cam.2022.114976 [Citations: 3]
  9. Generalized multiscale hybridizable discontinuous Galerkin (GMsHDG) method for flows in nonlinear porous media

    Moon, Minam

    Journal of Computational and Applied Mathematics, Vol. 415 (2022), Iss. P.114441

    https://doi.org/10.1016/j.cam.2022.114441 [Citations: 1]
  10. A generalized multiscale finite element method for high-contrast single-phase flow problems in anisotropic media

    Ren, Jun | Presho, Michael

    Journal of Computational and Applied Mathematics, Vol. 277 (2015), Iss. P.202

    https://doi.org/10.1016/j.cam.2014.09.006 [Citations: 1]
  11. Local–global model reduction of parameter-dependent, single-phase flow models via balanced truncation

    Presho, Michael | Protasov, Anastasiya | Gildin, Eduardo

    Journal of Computational and Applied Mathematics, Vol. 271 (2014), Iss. P.163

    https://doi.org/10.1016/j.cam.2014.03.022 [Citations: 6]
  12. Generalized multiscale finite element method for a nonlinear elastic strain-limiting Cosserat model

    Ammosov, Dmitry | Mai, Tina | Galvis, Juan

    Journal of Computational Physics, Vol. 519 (2024), Iss. P.113428

    https://doi.org/10.1016/j.jcp.2024.113428 [Citations: 0]
  13. Handbook of Geomathematics

    Multiscale Model Reduction with Generalized Multiscale Finite Element Methods in Geomathematics

    Efendiev, Yalchin | Presho, Michael

    2015

    https://doi.org/10.1007/978-3-642-54551-1_68 [Citations: 0]
  14. High-Order Models for Gas Transport in Multiscale Coal Rock

    Lv, Fang | Gao, Wei | Chen, Fang | Li, Ronglei | Chen, Guangjie | Yi, Tongsheng

    ACS Omega, Vol. 9 (2024), Iss. 39 P.40531

    https://doi.org/10.1021/acsomega.4c03652 [Citations: 1]
  15. Constraint energy minimizing generalized multiscale finite element method for multi-continuum Richards equations

    Mai, Tina | Cheung, Siu Wun | Park, Jun Sur Richard

    Journal of Computational Physics, Vol. 477 (2023), Iss. P.111915

    https://doi.org/10.1016/j.jcp.2023.111915 [Citations: 4]
  16. Generalized multiscale finite element methods for the reduced model of Darcy flow in fractured porous media

    Alotaibi, Manal | Chen, Huangxin | Sun, Shuyu

    Journal of Computational and Applied Mathematics, Vol. 413 (2022), Iss. P.114305

    https://doi.org/10.1016/j.cam.2022.114305 [Citations: 13]
  17. A non-intrusive bi-fidelity reduced basis method for time-independent problems

    Park, Jun Sur Richard | Zhu, Xueyu

    Journal of Computational Physics, Vol. 502 (2024), Iss. P.112797

    https://doi.org/10.1016/j.jcp.2024.112797 [Citations: 0]
  18. Prediction of discretization of online GMsFEM using deep learning for Richards equation

    Spiridonov, Denis | Stepanov, Sergei | Mai, Tina

    Journal of Computational and Applied Mathematics, Vol. 454 (2025), Iss. P.116167

    https://doi.org/10.1016/j.cam.2024.116167 [Citations: 1]
  19. Inverse modeling of tracer flow via a mass conservative generalized multiscale finite volume/element method and stochastic collocation

    Presho, Michael

    Computational and Applied Mathematics, Vol. 37 (2018), Iss. 5 P.6738

    https://doi.org/10.1007/s40314-018-0711-6 [Citations: 1]
  20. Generalized multiscale approximation of a multipoint flux mixed finite element method for Darcy–Forchheimer model

    He, Zhengkang | Chung, Eric T. | Chen, Jie | Chen, Zhangxin

    Journal of Computational and Applied Mathematics, Vol. 391 (2021), Iss. P.113466

    https://doi.org/10.1016/j.cam.2021.113466 [Citations: 6]
  21. Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method

    Efendiev, Yalchin | Lee, Seong | Li, Guanglian | Yao, Jun | Zhang, Na

    GEM - International Journal on Geomathematics, Vol. 6 (2015), Iss. 2 P.141

    https://doi.org/10.1007/s13137-015-0075-7 [Citations: 40]
  22. Constraint energy minimizing generalized multiscale finite element method for nonlinear poroelasticity and elasticity

    Fu, Shubin | Chung, Eric | Mai, Tina

    Journal of Computational Physics, Vol. 417 (2020), Iss. P.109569

    https://doi.org/10.1016/j.jcp.2020.109569 [Citations: 22]
  23. Uncertainty quantification of two-phase flow problems via measure theory and the generalized multiscale finite element method

    Presho, M. | Mattis, S. | Dawson, C.

    Computational Geosciences, Vol. 21 (2017), Iss. 2 P.187

    https://doi.org/10.1007/s10596-016-9603-2 [Citations: 3]
  24. A second-order multiscale approach for viscoelastic analysis of statistically inhomogeneous materials

    Yang, Zhiqiang | Sun, Yi | Liu, Yizhi | Ma, Qiang

    Composite Structures, Vol. 220 (2019), Iss. P.550

    https://doi.org/10.1016/j.compstruct.2019.04.044 [Citations: 2]
  25. Randomized Oversampling for Generalized Multiscale Finite Element Methods

    Calo, Victor M. | Efendiev, Yalchin | Galvis, Juan | Li, Guanglian

    Multiscale Modeling & Simulation, Vol. 14 (2016), Iss. 1 P.482

    https://doi.org/10.1137/140988826 [Citations: 46]
  26. Partially explicit time discretization for nonlinear time fractional diffusion equations

    Li, Wenyuan | Alikhanov, Anatoly | Efendiev, Yalchin | Leung, Wing Tat

    Communications in Nonlinear Science and Numerical Simulation, Vol. 113 (2022), Iss. P.106440

    https://doi.org/10.1016/j.cnsns.2022.106440 [Citations: 7]
  27. Hybrid explicit–implicit learning for multiscale problems with time dependent source

    Efendiev, Yalchin | Leung, Wing Tat | Li, Wenyuan | Zhang, Zecheng

    Communications in Nonlinear Science and Numerical Simulation, Vol. 120 (2023), Iss. P.107081

    https://doi.org/10.1016/j.cnsns.2022.107081 [Citations: 7]
  28. A conservative generalized multiscale finite volume/element method for modeling two-phase flow with capillary pressure

    Presho, Michael | Hill, Michael

    Journal of Computational and Applied Mathematics, Vol. 381 (2021), Iss. P.113026

    https://doi.org/10.1016/j.cam.2020.113026 [Citations: 3]
  29. Contrast-Independent, Partially-Explicit Time Discretizations for Nonlinear Multiscale Problems

    Chung, Eric T. | Efendiev, Yalchin | Leung, Wing Tat | Li, Wenyuan

    Mathematics, Vol. 9 (2021), Iss. 23 P.3000

    https://doi.org/10.3390/math9233000 [Citations: 8]
  30. Numerical homogenization for nonlinear strongly monotone problems

    Verfürth, Barbara

    IMA Journal of Numerical Analysis, Vol. 42 (2022), Iss. 2 P.1313

    https://doi.org/10.1093/imanum/drab004 [Citations: 2]
  31. Reduced-order multiscale modeling of nonlinear p-Laplacian flows in high-contrast media

    Presho, M. | Ye, S.

    Computational Geosciences, Vol. 19 (2015), Iss. 4 P.921

    https://doi.org/10.1007/s10596-015-9504-9 [Citations: 3]
  32. Detective generalized multiscale hybridizable discontinuous Galerkin(GMsHDG) method for porous media

    Park, Do Yang | Moon, Minam

    Journal of Computational and Applied Mathematics, Vol. 457 (2025), Iss. P.116320

    https://doi.org/10.1016/j.cam.2024.116320 [Citations: 0]
  33. A Multiscale Neural Network Based on Hierarchical Matrices

    Fan, Yuwei | Lin, Lin | Ying, Lexing | Zepeda-Nún͂ez, Leonardo

    Multiscale Modeling & Simulation, Vol. 17 (2019), Iss. 4 P.1189

    https://doi.org/10.1137/18M1203602 [Citations: 24]
  34. Handbook of Geomathematics

    Multiscale Model Reduction with Generalized Multiscale Finite Element Methods in Geomathematics

    Efendiev, Yalchin | Presho, Michael

    2014

    https://doi.org/10.1007/978-3-642-27793-1_68-2 [Citations: 0]