An Accurate Cartesian Method for Incompressible Flows with Moving Boundaries

An Accurate Cartesian Method for Incompressible Flows with Moving Boundaries

Year:    2014

Communications in Computational Physics, Vol. 15 (2014), Iss. 5 : pp. 1266–1290

Abstract

An accurate cartesian method is devised to simulate incompressible viscous flows past an arbitrary moving body. The Navier-Stokes equations are spatially discretized onto a fixed Cartesian mesh. The body is taken into account via the ghost-cell method and the so-called penalty method, resulting in second-order accuracy in velocity. The accuracy and the efficiency of the solver are tested through two-dimensional reference simulations. To show the versatility of this scheme we simulate a three-dimensional self propelled jellyfish prototype.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.220313.111013a

Communications in Computational Physics, Vol. 15 (2014), Iss. 5 : pp. 1266–1290

Published online:    2014-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    25

Keywords:   

  1. Congested Shallow Water Model: Trapped Air Pockets Modeling

    Parisot, Martin

    SIAM Journal on Scientific Computing, Vol. 45 (2023), Iss. 6 P.B828

    https://doi.org/10.1137/22M1514908 [Citations: 0]
  2. Existence of suitable weak solutions to the Navier–Stokes equations in time varying domains

    Choe, Hi Jun | Jang, Yunsoo | Yang, Minsuk

    Nonlinear Analysis, Vol. 163 (2017), Iss. P.163

    https://doi.org/10.1016/j.na.2017.08.003 [Citations: 7]
  3. An Eulerian finite-volume approach of fluid-structure interaction problems on quadtree meshes

    Bergmann, Michel | Fondanèche, Antoine | Iollo, Angelo

    Journal of Computational Physics, Vol. 471 (2022), Iss. P.111647

    https://doi.org/10.1016/j.jcp.2022.111647 [Citations: 4]
  4. Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples

    A Fully Eulerian Finite Volume Method for the Simulation of Fluid-Structure Interactions on AMR Enabled Quadtree Grids

    Bergmann, Michel | Fondanèche, Antoine | Iollo, Angelo

    2020

    https://doi.org/10.1007/978-3-030-43651-3_73 [Citations: 0]
  5. Cartesian CFD Methods for Complex Applications

    AMR Enabled Quadtree Discretization of Incompressible Navier–Stokes Equations with Moving Boundaries

    Bergmann, Michel | Fondanèche, Antoine | Iollo, Angelo

    2021

    https://doi.org/10.1007/978-3-030-61761-5_1 [Citations: 0]
  6. Modified multi-phase diffuse-interface model for compound droplets in contact with solid

    Yang, Junxiang | Li, Yibao | Kim, Junseok

    Journal of Computational Physics, Vol. 491 (2023), Iss. P.112345

    https://doi.org/10.1016/j.jcp.2023.112345 [Citations: 8]
  7. Phase-field simulation of multiple fluid vesicles with a consistently energy-stable implicit–explicit method

    Yang, Junxiang | Kim, Junseok

    Computer Methods in Applied Mechanics and Engineering, Vol. 417 (2023), Iss. P.116403

    https://doi.org/10.1016/j.cma.2023.116403 [Citations: 5]
  8. Modified diffuse interface fluid model and its consistent energy-stable computation in arbitrary domains

    Yang, Junxiang | Tan, Zhijun | Wang, Jian | Kim, Junseok

    Journal of Computational Physics, Vol. 488 (2023), Iss. P.112216

    https://doi.org/10.1016/j.jcp.2023.112216 [Citations: 10]
  9. Bioinspired swimming simulations

    Bergmann, Michel | Iollo, Angelo

    Journal of Computational Physics, Vol. 323 (2016), Iss. P.310

    https://doi.org/10.1016/j.jcp.2016.07.022 [Citations: 10]
  10. Topology-free immersed boundary method for incompressible turbulence flows: An aerodynamic simulation for “dirty” CAD geometry

    Onishi, Keiji | Tsubokura, Makoto

    Computer Methods in Applied Mechanics and Engineering, Vol. 378 (2021), Iss. P.113734

    https://doi.org/10.1016/j.cma.2021.113734 [Citations: 16]
  11. Phase-field modeling and consistent energy-stable simulation of binary creeping flows in contact with solid

    Yang, Junxiang | Wu, Jingwen | Tan, Zhijun

    Computer Methods in Applied Mechanics and Engineering, Vol. 414 (2023), Iss. P.116180

    https://doi.org/10.1016/j.cma.2023.116180 [Citations: 2]
  12. A discrete forcing method dedicated to moving bodies in two‐phase flow

    Benguigui, W. | Doradoux, A. | Lavieville, J. | Mimouni, S. | Longatte, E.

    International Journal for Numerical Methods in Fluids, Vol. 88 (2018), Iss. 7 P.315

    https://doi.org/10.1002/fld.4670 [Citations: 10]
  13. An Eulerian Finite-Volume Approach of Fluid-Structure Interaction Problems on Quadtree Meshes

    Bergmann, Michel | Fondanèche, Antoine | Iollo, Angelo

    SSRN Electronic Journal , Vol. (2022), Iss.

    https://doi.org/10.2139/ssrn.4000236 [Citations: 0]
  14. ADER scheme for incompressible Navier-Stokes equations on overset grids with a compact transmission condition

    Bergmann, Michel | Carlino, Michele Giuliano | Iollo, Angelo | Telib, Haysam

    Journal of Computational Physics, Vol. 467 (2022), Iss. P.111414

    https://doi.org/10.1016/j.jcp.2022.111414 [Citations: 3]
  15. Enablers for high‐order level set methods in fluid mechanics

    Luddens, Francky | Bergmann, Michel | Weynans, Lisl

    International Journal for Numerical Methods in Fluids, Vol. 79 (2015), Iss. 12 P.654

    https://doi.org/10.1002/fld.4070 [Citations: 12]
  16. Simulation of moving boundaries interacting with compressible reacting flows using a second-order adaptive Cartesian cut-cell method

    Muralidharan, Balaji | Menon, Suresh

    Journal of Computational Physics, Vol. 357 (2018), Iss. P.230

    https://doi.org/10.1016/j.jcp.2017.12.030 [Citations: 21]
  17. Data-driven optimal control of undulatory swimming

    Maroun, Karl | Traoré, Philippe | Bergmann, Michel

    Physics of Fluids, Vol. 36 (2024), Iss. 7

    https://doi.org/10.1063/5.0215502 [Citations: 0]
  18. A two-way coupling CFD method to simulate the dynamics of a wave energy converter

    Bergmann, Michel | Bracco, Giovanni | Gallizio, Federico | Giorcelli, Ermanno | Iollo, Angelo | Mattiazzo, Giuliana | Ponzetta, Maurizio

    OCEANS 2015 - Genova, (2015), P.1

    https://doi.org/10.1109/OCEANS-Genova.2015.7271481 [Citations: 3]
  19. Numerical modeling of a self-propelled dolphin jump out of water

    Bergmann, Michel

    Bioinspiration & Biomimetics, Vol. 17 (2022), Iss. 6 P.065010

    https://doi.org/10.1088/1748-3190/ac8fc8 [Citations: 5]
  20. Local lubrication model for spherical particles within incompressible Navier-Stokes flows

    Lambert, B. | Weynans, L. | Bergmann, M.

    Physical Review E, Vol. 97 (2018), Iss. 3

    https://doi.org/10.1103/PhysRevE.97.033313 [Citations: 18]
  21. A zonal Galerkin-free POD model for incompressible flows

    Bergmann, Michel | Ferrero, Andrea | Iollo, Angelo | Lombardi, Edoardo | Scardigli, Angela | Telib, Haysam

    Journal of Computational Physics, Vol. 352 (2018), Iss. P.301

    https://doi.org/10.1016/j.jcp.2017.10.001 [Citations: 32]
  22. Arbitrary-Lagrangian-Eulerian finite volume IMEX schemes for the incompressible Navier-Stokes equations on evolving Chimera meshes

    Carlino, Michele Giuliano | Boscheri, Walter

    Journal of Computational Physics, Vol. 501 (2024), Iss. P.112764

    https://doi.org/10.1016/j.jcp.2024.112764 [Citations: 3]
  23. Direct numerical simulations of three-dimensional flows past obstacles with a vortex penalization method

    Mimeau, C. | Cottet, G.-H. | Mortazavi, I.

    Computers & Fluids, Vol. 136 (2016), Iss. P.331

    https://doi.org/10.1016/j.compfluid.2016.06.020 [Citations: 22]