Loading [MathJax]/jax/output/HTML-CSS/config.js
Journals
Resources
About Us
Open Access
Go to previous page

An Accurate Cartesian Method for Incompressible Flows with Moving Boundaries

An Accurate Cartesian Method for Incompressible Flows with Moving Boundaries

Year:    2014

Author:    M. Bergmann, J. Hovnanian, A. Iollo

Communications in Computational Physics, Vol. 15 (2014), Iss. 5 : pp. 1266–1290

Abstract

An accurate cartesian method is devised to simulate incompressible viscous flows past an arbitrary moving body. The Navier-Stokes equations are spatially discretized onto a fixed Cartesian mesh. The body is taken into account via the ghost-cell method and the so-called penalty method, resulting in second-order accuracy in velocity. The accuracy and the efficiency of the solver are tested through two-dimensional reference simulations. To show the versatility of this scheme we simulate a three-dimensional self propelled jellyfish prototype.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.220313.111013a

Communications in Computational Physics, Vol. 15 (2014), Iss. 5 : pp. 1266–1290

Published online:    2014-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    25

Keywords:   

Author Details

M. Bergmann Email

J. Hovnanian Email

A. Iollo Email

  1. Congested Shallow Water Model: Trapped Air Pockets Modeling

    Parisot, Martin

    SIAM Journal on Scientific Computing, Vol. 45 (2023), Iss. 6 P.B828

    https://doi.org/10.1137/22M1514908 [Citations: 1]
  2. Existence of suitable weak solutions to the Navier–Stokes equations in time varying domains

    Choe, Hi Jun | Jang, Yunsoo | Yang, Minsuk

    Nonlinear Analysis, Vol. 163 (2017), Iss. P.163

    https://doi.org/10.1016/j.na.2017.08.003 [Citations: 9]
  3. Modified diffuse interface fluid model and its consistent energy-stable computation in arbitrary domains

    Yang, Junxiang | Tan, Zhijun | Wang, Jian | Kim, Junseok

    Journal of Computational Physics, Vol. 488 (2023), Iss. P.112216

    https://doi.org/10.1016/j.jcp.2023.112216 [Citations: 19]
  4. Topology-free immersed boundary method for incompressible turbulence flows: An aerodynamic simulation for “dirty” CAD geometry

    Onishi, Keiji | Tsubokura, Makoto

    Computer Methods in Applied Mechanics and Engineering, Vol. 378 (2021), Iss. P.113734

    https://doi.org/10.1016/j.cma.2021.113734 [Citations: 19]
  5. Self-propelling, soft, and slender structures in fluids: Cosserat rods immersed in the velocity–vorticity formulation of the incompressible Navier–Stokes equations

    Tekinalp, Arman | Bhosale, Yashraj | Cui, Songyuan | Chan, Fan Kiat | Gazzola, Mattia

    Computer Methods in Applied Mechanics and Engineering, Vol. 440 (2025), Iss. P.117910

    https://doi.org/10.1016/j.cma.2025.117910 [Citations: 0]
  6. Phase-field modeling and consistent energy-stable simulation of binary creeping flows in contact with solid

    Yang, Junxiang | Wu, Jingwen | Tan, Zhijun

    Computer Methods in Applied Mechanics and Engineering, Vol. 414 (2023), Iss. P.116180

    https://doi.org/10.1016/j.cma.2023.116180 [Citations: 6]
  7. A discrete forcing method dedicated to moving bodies in two‐phase flow

    Benguigui, W. | Doradoux, A. | Lavieville, J. | Mimouni, S. | Longatte, E.

    International Journal for Numerical Methods in Fluids, Vol. 88 (2018), Iss. 7 P.315

    https://doi.org/10.1002/fld.4670 [Citations: 10]
  8. An efficient computational method for simulating incompressible fluid flows on a virtual cubic surface

    Yang, Junxiang | Kang, Seungyoon | Kim, Sangkwon | Hwang, Youngjin | Kwak, Soobin | Ham, Seokjun | Kim, Junseok

    Communications in Nonlinear Science and Numerical Simulation, Vol. 144 (2025), Iss. P.108676

    https://doi.org/10.1016/j.cnsns.2025.108676 [Citations: 0]
  9. Enablers for high‐order level set methods in fluid mechanics

    Luddens, Francky | Bergmann, Michel | Weynans, Lisl

    International Journal for Numerical Methods in Fluids, Vol. 79 (2015), Iss. 12 P.654

    https://doi.org/10.1002/fld.4070 [Citations: 12]
  10. A two-way coupling CFD method to simulate the dynamics of a wave energy converter

    Bergmann, Michel | Bracco, Giovanni | Gallizio, Federico | Giorcelli, Ermanno | Iollo, Angelo | Mattiazzo, Giuliana | Ponzetta, Maurizio

    OCEANS 2015 - Genova, (2015), P.1

    https://doi.org/10.1109/OCEANS-Genova.2015.7271481 [Citations: 3]
  11. Numerical modeling of a self-propelled dolphin jump out of water

    Bergmann, Michel

    Bioinspiration & Biomimetics, Vol. 17 (2022), Iss. 6 P.065010

    https://doi.org/10.1088/1748-3190/ac8fc8 [Citations: 6]
  12. Local lubrication model for spherical particles within incompressible Navier-Stokes flows

    Lambert, B. | Weynans, L. | Bergmann, M.

    Physical Review E, Vol. 97 (2018), Iss. 3

    https://doi.org/10.1103/PhysRevE.97.033313 [Citations: 18]
  13. Direct numerical simulations of three-dimensional flows past obstacles with a vortex penalization method

    Mimeau, C. | Cottet, G.-H. | Mortazavi, I.

    Computers & Fluids, Vol. 136 (2016), Iss. P.331

    https://doi.org/10.1016/j.compfluid.2016.06.020 [Citations: 23]
  14. Modeling zebrafish escape swim reveals maximum neuromuscular power output and efficient body movement adaptation to increased water viscosity

    Ravel, Guillaume | Mercé, Théo | Bergmann, Michel | Knoll-Gellida, Anja | Bouharguane, Afaf | Al Kassir, Sara | Iollo, Angelo | Babin, Patrick J.

    iScience, Vol. 28 (2025), Iss. 3 P.112056

    https://doi.org/10.1016/j.isci.2025.112056 [Citations: 0]
  15. An Eulerian finite-volume approach of fluid-structure interaction problems on quadtree meshes

    Bergmann, Michel | Fondanèche, Antoine | Iollo, Angelo

    Journal of Computational Physics, Vol. 471 (2022), Iss. P.111647

    https://doi.org/10.1016/j.jcp.2022.111647 [Citations: 6]
  16. Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples

    A Fully Eulerian Finite Volume Method for the Simulation of Fluid-Structure Interactions on AMR Enabled Quadtree Grids

    Bergmann, Michel | Fondanèche, Antoine | Iollo, Angelo

    2020

    https://doi.org/10.1007/978-3-030-43651-3_73 [Citations: 0]
  17. Cartesian CFD Methods for Complex Applications

    AMR Enabled Quadtree Discretization of Incompressible Navier–Stokes Equations with Moving Boundaries

    Bergmann, Michel | Fondanèche, Antoine | Iollo, Angelo

    2021

    https://doi.org/10.1007/978-3-030-61761-5_1 [Citations: 0]
  18. Modified multi-phase diffuse-interface model for compound droplets in contact with solid

    Yang, Junxiang | Li, Yibao | Kim, Junseok

    Journal of Computational Physics, Vol. 491 (2023), Iss. P.112345

    https://doi.org/10.1016/j.jcp.2023.112345 [Citations: 12]
  19. Phase-field simulation of multiple fluid vesicles with a consistently energy-stable implicit–explicit method

    Yang, Junxiang | Kim, Junseok

    Computer Methods in Applied Mechanics and Engineering, Vol. 417 (2023), Iss. P.116403

    https://doi.org/10.1016/j.cma.2023.116403 [Citations: 7]
  20. Bioinspired swimming simulations

    Bergmann, Michel | Iollo, Angelo

    Journal of Computational Physics, Vol. 323 (2016), Iss. P.310

    https://doi.org/10.1016/j.jcp.2016.07.022 [Citations: 12]
  21. An Eulerian Finite-Volume Approach of Fluid-Structure Interaction Problems on Quadtree Meshes

    Bergmann, Michel | Fondanèche, Antoine | Iollo, Angelo

    SSRN Electronic Journal , Vol. (2022), Iss.

    https://doi.org/10.2139/ssrn.4000236 [Citations: 0]
  22. ADER scheme for incompressible Navier-Stokes equations on overset grids with a compact transmission condition

    Bergmann, Michel | Carlino, Michele Giuliano | Iollo, Angelo | Telib, Haysam

    Journal of Computational Physics, Vol. 467 (2022), Iss. P.111414

    https://doi.org/10.1016/j.jcp.2022.111414 [Citations: 3]
  23. Simulation of moving boundaries interacting with compressible reacting flows using a second-order adaptive Cartesian cut-cell method

    Muralidharan, Balaji | Menon, Suresh

    Journal of Computational Physics, Vol. 357 (2018), Iss. P.230

    https://doi.org/10.1016/j.jcp.2017.12.030 [Citations: 21]
  24. Data-driven optimal control of undulatory swimming

    Maroun, Karl | Traoré, Philippe | Bergmann, Michel

    Physics of Fluids, Vol. 36 (2024), Iss. 7

    https://doi.org/10.1063/5.0215502 [Citations: 0]
  25. A zonal Galerkin-free POD model for incompressible flows

    Bergmann, Michel | Ferrero, Andrea | Iollo, Angelo | Lombardi, Edoardo | Scardigli, Angela | Telib, Haysam

    Journal of Computational Physics, Vol. 352 (2018), Iss. P.301

    https://doi.org/10.1016/j.jcp.2017.10.001 [Citations: 34]
  26. Arbitrary-Lagrangian-Eulerian finite volume IMEX schemes for the incompressible Navier-Stokes equations on evolving Chimera meshes

    Carlino, Michele Giuliano | Boscheri, Walter

    Journal of Computational Physics, Vol. 501 (2024), Iss. P.112764

    https://doi.org/10.1016/j.jcp.2024.112764 [Citations: 3]