A Stochastic Galerkin Method for Stochastic Control Problems

A Stochastic Galerkin Method for Stochastic Control Problems

Year:    2013

Communications in Computational Physics, Vol. 14 (2013), Iss. 1 : pp. 77–106

Abstract

In an interdisciplinary field on mathematics and physics, we examine a physical problem, fluid flow in porous media, which is represented by a stochastic partial differential equation (SPDE). We first give a priori error estimates for the solutions to an optimization problem constrained by the physical model under lower regularity assumptions than the literature. We then use the concept of Galerkin finite element methods to establish a new numerical algorithm to give approximations for our stochastic optimal physical problem. Finally, we develop original computer programs based on the algorithm and use several numerical examples of various situations to see how well our solver works by comparing its outputs to the priori error estimates.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.241011.150612a

Communications in Computational Physics, Vol. 14 (2013), Iss. 1 : pp. 77–106

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    30

Keywords:   

  1. Parameter estimation of a generalized Lotka–Volterra system using a modified PSO algorithm

    Lazzús, Juan A. | Vega-Jorquera, Pedro | López-Caraballo, Carlos H. | Palma-Chilla, Luis | Salfate, Ignacio

    Applied Soft Computing, Vol. 96 (2020), Iss. P.106606

    https://doi.org/10.1016/j.asoc.2020.106606 [Citations: 13]
  2. A priori error estimates of a meshless method for optimal control problems of stochastic elliptic PDEs

    Huang, Fenglin | Chen, Yanping | Huang, Yunqing

    International Journal of Computer Mathematics, Vol. 96 (2019), Iss. 5 P.1048

    https://doi.org/10.1080/00207160.2018.1483022 [Citations: 2]
  3. Experimental optimization and mathematical modeling of the supercritical fluid extraction of essential oil from Eryngium billardieri : Application of simulated annealing (SA) algorithm

    Sodeifian, Gholamhossein | Sajadian, Seyed Ali | Saadati Ardestani, Nedasadat

    The Journal of Supercritical Fluids, Vol. 127 (2017), Iss. P.146

    https://doi.org/10.1016/j.supflu.2017.04.007 [Citations: 110]
  4. Adaptive Finite Element Approximation for an Elliptic Optimal Control Problem with Both Pointwise and Integral Control Constraints

    Du, Ning | Ge, Liang | Liu, Wenbin

    Journal of Scientific Computing, Vol. 60 (2014), Iss. 1 P.160

    https://doi.org/10.1007/s10915-013-9790-0 [Citations: 7]
  5. Proceedings of International Conference on Computing and Communication Networks

    A Memory-Based Particle Swarm Optimization for Parameter Identification of Lorenz Chaotic System

    Rizk-Allah, Rizk M. | Farag, M. A. | Barghout, Mahmoud H. | Hassanien, Aboul Ella

    2022

    https://doi.org/10.1007/978-981-19-0604-6_53 [Citations: 1]
  6. Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm

    Lazzús, Juan A. | Rivera, Marco | López-Caraballo, Carlos H.

    Physics Letters A, Vol. 380 (2016), Iss. 11-12 P.1164

    https://doi.org/10.1016/j.physleta.2016.01.040 [Citations: 59]
  7. Economical impact of RFID implementation in remanufacturing: a Chaos-based Interactive Artificial Bee Colony approach

    Kumar, Vishwa V. | Liou, F. W. | Balakrishnan, S. N. | Kumar, Vikas

    Journal of Intelligent Manufacturing, Vol. 26 (2015), Iss. 4 P.815

    https://doi.org/10.1007/s10845-013-0836-9 [Citations: 23]
  8. Uncertainty quantification for a multi-phase carbon equation of state model

    Lindquist, Beth A. | Jadrich, Ryan B.

    Journal of Applied Physics, Vol. 131 (2022), Iss. 15

    https://doi.org/10.1063/5.0087210 [Citations: 10]
  9. High-pressure solubility of carbon dioxide in pyrrolidinium-based ionic liquids: [bmpyr][dca] and [bmpyr][Tf2N]

    Lee, Byung-Chul | Nam, Sang Gyu

    Korean Journal of Chemical Engineering, Vol. 32 (2015), Iss. 3 P.521

    https://doi.org/10.1007/s11814-014-0364-0 [Citations: 15]
  10. A Sparse Grid Stochastic Collocation Discontinuous Galerkin Method for Constrained Optimal Control Problem Governed by Random Convection Dominated Diffusion Equations

    Ge, Liang | Sun, Tongjun

    Numerical Functional Analysis and Optimization, Vol. 40 (2019), Iss. 7 P.763

    https://doi.org/10.1080/01630563.2018.1508034 [Citations: 3]
  11. A Sparse Grid Stochastic Collocation Upwind Finite Volume Element Method for the Constrained Optimal Control Problem Governed by Random Convection Diffusion Equations

    Ge, Liang | Wang, Lianhai | Chang, Yanzhen

    Journal of Scientific Computing, Vol. 77 (2018), Iss. 1 P.524

    https://doi.org/10.1007/s10915-018-0713-y [Citations: 1]
  12. Application of particle swarm+ant colony optimization to calculate the interaction parameters on phase equilibria

    Lazzús, J. A. | Rivera, M. | Salfate, I. | Pulgar-Villarroel, G. | Rojas, P.

    Journal of Engineering Thermophysics, Vol. 25 (2016), Iss. 2 P.216

    https://doi.org/10.1134/S1810232816020065 [Citations: 5]
  13. THE h × p FINITE ELEMENT METHOD FOR OPTIMAL CONTROL PROBLEMS CONSTRAINED BY STOCHASTIC ELLIPTIC PDES

    LEE, HYUNG-CHUN | LEE, GWOON

    Journal of the Korea Society for Industrial and Applied Mathematics, Vol. 19 (2015), Iss. 4 P.387

    https://doi.org/10.12941/jksiam.2015.19.387 [Citations: 0]
  14. Hybrid swarm optimization for vapor–liquid equilibrium modeling

    Lazzús, Juan A.

    Journal of Molecular Liquids, Vol. 196 (2014), Iss. P.167

    https://doi.org/10.1016/j.molliq.2014.03.031 [Citations: 9]
  15. A Priori Error Estimate of Stochastic Galerkin Method for Optimal Control Problem Governed by Random Parabolic PDE with Constrained Control

    Gong, Benxue | Sun, Tongjun | Shen, Wanfang | Liu, Wenbin

    International Journal of Computational Methods, Vol. 13 (2016), Iss. 05 P.1650028

    https://doi.org/10.1142/S0219876216500286 [Citations: 6]
  16. Encyclopedia of Information Science and Technology, Third Edition

    Hybrid Swarm Intelligence

    Gonsalves, Tad

    2014

    https://doi.org/10.4018/978-1-4666-5888-2.ch018 [Citations: 6]
  17. A Novel Hybrid Optimization Method in Distribution Network Feeder Reconfiguration

    Peng, Zhengrui

    2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), (2020), P.172

    https://doi.org/10.1109/EI250167.2020.9346914 [Citations: 0]
  18. Bioactive assay and hyphenated chromatography detection for complex supercritical CO 2 extract from Chaihu Shugan San using an experimental design approach

    He, Min | Hong, Liang | Yang, Zhi-Yu | Yang, Tian-Biao | Zeng, Jun

    Microchemical Journal, Vol. 142 (2018), Iss. P.394

    https://doi.org/10.1016/j.microc.2018.07.016 [Citations: 13]
  19. A Priori Error Estimate of Stochastic Galerkin Method for Optimal Control Problem Governed by Stochastic Elliptic PDE with Constrained Control

    Sun, Tongjun | Shen, Wanfang | Gong, Benxue | Liu, Wenbin

    Journal of Scientific Computing, Vol. 67 (2016), Iss. 2 P.405

    https://doi.org/10.1007/s10915-015-0091-7 [Citations: 13]
  20. Multilevel Monte Carlo Analysis for Optimal Control of Elliptic PDEs with Random Coefficients

    Ali, Ahmad Ahmad | Ullmann, Elisabeth | Hinze, Michael

    SIAM/ASA Journal on Uncertainty Quantification, Vol. 5 (2017), Iss. 1 P.466

    https://doi.org/10.1137/16M109870X [Citations: 34]
  21. Robust Optimization of PDEs with Random Coefficients Using a Multilevel Monte Carlo Method

    Van Barel, Andreas | Vandewalle, Stefan

    SIAM/ASA Journal on Uncertainty Quantification, Vol. 7 (2019), Iss. 1 P.174

    https://doi.org/10.1137/17M1155892 [Citations: 27]
  22. Neural network modeling based double-population chaotic accelerated particle swarm optimization and diffusion theory for solubility prediction

    Li, Mengshan | Lian, Suyun | Wang, Fan | Zhou, Yanying | Chen, Bingsheng | Guan, Lixin | Wu, Yan

    Chemical Engineering Research and Design, Vol. 155 (2020), Iss. P.98

    https://doi.org/10.1016/j.cherd.2020.01.003 [Citations: 14]