Journals
Resources
About Us
Open Access

Optimization-Based String Method for Finding Minimum Energy Path

Optimization-Based String Method for Finding Minimum Energy Path

Year:    2013

Communications in Computational Physics, Vol. 14 (2013), Iss. 2 : pp. 265–275

Abstract

We present an efficient algorithm for calculating the minimum energy path (MEP) and energy barriers between local minima on a multidimensional potential energy surface (PES). Such paths play a central role in the understanding of transition pathways between metastable states. Our method relies on the original formulation of the string method [Phys. Rev. B, 66, 052301 (2002)], i.e. to evolve a smooth curve along a direction normal to the curve. The algorithm works by performing minimization steps on hyperplanes normal to the curve. Therefore the problem of finding MEP on the PES is remodeled as a set of constrained minimization problems. This provides the flexibility of using minimization algorithms faster than the steepest descent method used in the simplified string method [J. Chem. Phys., 126(16), 164103 (2007)]. At the same time, it provides a more direct analog of the finite temperature string method. The applicability of the algorithm is demonstrated using various examples.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.220212.030812a

Communications in Computational Physics, Vol. 14 (2013), Iss. 2 : pp. 265–275

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:   

  1. Modelling and computation of liquid crystals

    Wang, Wei | Zhang, Lei | Zhang, Pingwen

    Acta Numerica, Vol. 30 (2021), Iss. P.765

    https://doi.org/10.1017/S0962492921000088 [Citations: 33]
  2. A Local Minimax Method Using Virtual Geometric Objects: Part II—For Finding Equality Constrained Saddles

    Li, Zhaoxiang | Zhou, Jianxin

    Journal of Scientific Computing, Vol. 78 (2019), Iss. 1 P.226

    https://doi.org/10.1007/s10915-018-0775-x [Citations: 6]
  3. A Local Minimax Method Using Virtual Geometric Objects: Part I—For Finding Saddles

    Li, Zhaoxiang | Ji, Bingbing | Zhou, Jianxin

    Journal of Scientific Computing, Vol. 78 (2019), Iss. 1 P.202

    https://doi.org/10.1007/s10915-018-0774-y [Citations: 5]
  4. Computational simulation to determine the optimal energy requirement in a process using the improved and simplified string method

    Floriano, Juan | Martinez-Contreras, Ulises | Gallo, Marco

    2018 Systems and Information Engineering Design Symposium (SIEDS), (2018), P.48

    https://doi.org/10.1109/SIEDS.2018.8374757 [Citations: 1]
  5. Atomic-level designed LLZO electrolyte for LTO electrode in all-solid-state batteries with superb interfacial properties

    Xu, Changgui | Xue, Yu | Zhang, Miao | Liao, Ningbo

    Surfaces and Interfaces, Vol. 40 (2023), Iss. P.103128

    https://doi.org/10.1016/j.surfin.2023.103128 [Citations: 2]
  6. Recent developments in computational modelling of nucleation in phase transformations

    Zhang, Lei | Ren, Weiqing | Samanta, Amit | Du, Qiang

    npj Computational Materials, Vol. 2 (2016), Iss. 1

    https://doi.org/10.1038/npjcompumats.2016.3 [Citations: 38]
  7. Exploring the free energy surface using ab initio molecular dynamics

    Samanta, Amit | Morales, Miguel A. | Schwegler, Eric

    The Journal of Chemical Physics, Vol. 144 (2016), Iss. 16

    https://doi.org/10.1063/1.4945653 [Citations: 13]
  8. Transition pathways between defect patterns in confined nematic liquid crystals

    Han, Yucen | Hu, Yucheng | Zhang, Pingwen | Zhang, Lei

    Journal of Computational Physics, Vol. 396 (2019), Iss. P.1

    https://doi.org/10.1016/j.jcp.2019.06.028 [Citations: 19]
  9. Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems

    Keith, John A. | Vassilev-Galindo, Valentin | Cheng, Bingqing | Chmiela, Stefan | Gastegger, Michael | Müller, Klaus-Robert | Tkatchenko, Alexandre

    Chemical Reviews, Vol. 121 (2021), Iss. 16 P.9816

    https://doi.org/10.1021/acs.chemrev.1c00107 [Citations: 449]
  10. An efficient saddle search method for ordered phase transitions involving translational invariance

    Cui, Gang | Jiang, Kai | Zhou, Tiejun

    Computer Physics Communications, Vol. 306 (2025), Iss. P.109381

    https://doi.org/10.1016/j.cpc.2024.109381 [Citations: 0]
  11. Spring pair method of finding saddle points using the minimum energy path as a compass

    Cui, Gang | Jiang, Kai

    Physical Review E, Vol. 110 (2024), Iss. 6

    https://doi.org/10.1103/PhysRevE.110.064123 [Citations: 0]
  12. On the limits of coercivity in permanent magnets

    Fischbacher, J. | Kovacs, A. | Oezelt, H. | Gusenbauer, M. | Schrefl, T. | Exl, L. | Givord, D. | Dempsey, N. M. | Zimanyi, G. | Winklhofer, M. | Hrkac, G. | Chantrell, R. | Sakuma, N. | Yano, M. | Kato, A. | Shoji, T. | Manabe, A.

    Applied Physics Letters, Vol. 111 (2017), Iss. 7

    https://doi.org/10.1063/1.4999315 [Citations: 28]
  13. Full-dimensional neural network potential energy surface and dynamics of the CH2OO + H2O reaction

    Wu, Hao | Fu, Yanlin | Dong, Wenrui | Fu, Bina | Zhang, Dong H.

    RSC Advances, Vol. 13 (2023), Iss. 20 P.13397

    https://doi.org/10.1039/D3RA02069J [Citations: 5]
  14. Searching the weakest link: Demagnetizing fields and magnetization reversal in permanent magnets

    Fischbacher, J. | Kovacs, A. | Exl, L. | Kühnel, J. | Mehofer, E. | Sepehri-Amin, H. | Ohkubo, T. | Hono, K. | Schrefl, T.

    Scripta Materialia, Vol. 154 (2018), Iss. P.253

    https://doi.org/10.1016/j.scriptamat.2017.11.020 [Citations: 37]
  15. High entropy alloys: A focused review of mechanical properties and deformation mechanisms

    George, E.P. | Curtin, W.A. | Tasan, C.C.

    Acta Materialia, Vol. 188 (2020), Iss. P.435

    https://doi.org/10.1016/j.actamat.2019.12.015 [Citations: 1270]
  16. Magnetic states and dynamics of bistable square Fe nanoislands

    Panagiotopoulos, Ioannis

    Physica B: Condensed Matter, Vol. 574 (2019), Iss. P.411664

    https://doi.org/10.1016/j.physb.2019.411664 [Citations: 0]
  17. Determining Rate Coefficients for the 11-Atom Reaction via Ring Polymer Molecular Dynamics Based on a 27-Dimensional Potential Energy Surface: The Reaction between anti-CH3CHOO and H2O

    Liu, Lijie | Fu, Yanlin | Wu, Hao | Lu, Xiaoxiao | Dong, Wenrui | Wang, Xingan | Zhang, Dong H. | Fu, Bina

    The Journal of Physical Chemistry Letters, Vol. 16 (2025), Iss. 2 P.460

    https://doi.org/10.1021/acs.jpclett.4c03327 [Citations: 0]
  18. The thermodynamics of a liquid-solid interface at extreme conditions: A model close-packed system up to 100 GPa

    Samanta, Amit | Belof, Jonathan L.

    The Journal of Chemical Physics, Vol. 149 (2018), Iss. 12

    https://doi.org/10.1063/1.5028268 [Citations: 4]
  19. Vortex nucleation barriers and stable fractional vortices near boundaries in multicomponent superconductors

    Maiani, Andrea | Benfenati, Andrea | Babaev, Egor

    Physical Review B, Vol. 105 (2022), Iss. 22

    https://doi.org/10.1103/PhysRevB.105.224507 [Citations: 4]
  20. Force-Free Identification of Minimum-Energy Pathways and Transition States for Stochastic Electronic Structure Theories

    Iyer, Gopal R. | Whelpley, Noah | Tiihonen, Juha | Kent, Paul R. C. | Krogel, Jaron T. | Rubenstein, Brenda M.

    Journal of Chemical Theory and Computation, Vol. 20 (2024), Iss. 17 P.7416

    https://doi.org/10.1021/acs.jctc.4c00214 [Citations: 0]
  21. Iterative minimization algorithm for efficient calculations of transition states

    Gao, Weiguo | Leng, Jing | Zhou, Xiang

    Journal of Computational Physics, Vol. 309 (2016), Iss. P.69

    https://doi.org/10.1016/j.jcp.2015.12.056 [Citations: 16]
  22. Multiscale simulations toward calculating coercivity of Nd-Fe-B permanent magnets at high temperatures

    Gong, Qihua | Yi, Min | Xu, Bai-Xiang

    Physical Review Materials, Vol. 3 (2019), Iss. 8

    https://doi.org/10.1103/PhysRevMaterials.3.084406 [Citations: 29]