On Diffuse Interface Modeling and Simulation of Surfactants in Two-Phase Fluid Flow

On Diffuse Interface Modeling and Simulation of Surfactants in Two-Phase Fluid Flow

Year:    2013

Communications in Computational Physics, Vol. 14 (2013), Iss. 4 : pp. 879–915

Abstract

An existing phase-field model of two immiscible fluids with a single soluble surfactant present is discussed in detail. We analyze the well-posedness of the model and provide strong evidence that it is mathematically ill-posed for a large set of physically relevant parameters. As a consequence, critical modifications to the model are suggested that substantially increase the domain of validity. Carefully designed numerical simulations offer informative demonstrations as to the sharpness of our theoretical results and the qualities of the physical model. A fully coupled hydrodynamic test-case demonstrates the potential to also capture non-trivial effects on the overall flow.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.120712.281212a

Communications in Computational Physics, Vol. 14 (2013), Iss. 4 : pp. 879–915

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    37

Keywords:   

  1. Decoupled and energy stable schemes for phase-field surfactant model based on mobility operator splitting technique

    Lu, Nan | Wang, Chenxi | Zhang, Lun | Zhang, Zhen

    Journal of Computational and Applied Mathematics, Vol. 459 (2025), Iss. P.116365

    https://doi.org/10.1016/j.cam.2024.116365 [Citations: 0]
  2. On a system of coupled Cahn–Hilliard equations

    Di Primio, Andrea | Grasselli, Maurizio

    Nonlinear Analysis: Real World Applications, Vol. 67 (2022), Iss. P.103601

    https://doi.org/10.1016/j.nonrwa.2022.103601 [Citations: 0]
  3. Simulation of viscoelastic two-phase flows with insoluble surfactants

    Venkatesan, Jagannath | Padmanabhan, Adhithya | Ganesan, Sashikumaar

    Journal of Non-Newtonian Fluid Mechanics, Vol. 267 (2019), Iss. P.61

    https://doi.org/10.1016/j.jnnfm.2019.04.002 [Citations: 6]
  4. Effect of surfactant-laden droplets on turbulent flow topology

    Soligo, Giovanni | Roccon, Alessio | Soldati, Alfredo

    Physical Review Fluids, Vol. 5 (2020), Iss. 7

    https://doi.org/10.1103/PhysRevFluids.5.073606 [Citations: 20]
  5. An efficiently linear and totally decoupled variant of SAV approach for the binary phase-field surfactant fluid model

    Han, Huan | Liu, Shuhong | Zuo, Zhigang | Yang, Junxiang

    Computers & Fluids, Vol. 238 (2022), Iss. P.105364

    https://doi.org/10.1016/j.compfluid.2022.105364 [Citations: 5]
  6. A model for transport of interface-confined scalars and insoluble surfactants in two-phase flows

    Jain, Suhas S.

    Journal of Computational Physics, Vol. 515 (2024), Iss. P.113277

    https://doi.org/10.1016/j.jcp.2024.113277 [Citations: 2]
  7. Efficient, second oder accurate, and unconditionally energy stable numerical scheme for a new hydrodynamics coupled binary phase-field surfactant system

    Zhang, Jun | Chen, Chuanjun | Wang, Jiangxing | Yang, Xiaofeng

    Computer Physics Communications, Vol. 251 (2020), Iss. P.107122

    https://doi.org/10.1016/j.cpc.2019.107122 [Citations: 17]
  8. Direct simulation of viscoelastic-viscoelastic emulsions in sliding bi-periodic frames using Cahn–Hilliard formulation

    Lee, Junghaeng | Hwang, Wook Ryol | Cho, Kwang Soo

    Journal of Non-Newtonian Fluid Mechanics, Vol. 318 (2023), Iss. P.105061

    https://doi.org/10.1016/j.jnnfm.2023.105061 [Citations: 0]
  9. A discontinuous Galerkin method for a diffuse-interface model of immiscible two-phase flows with soluble surfactant

    Ray, Deep | Liu, Chen | Riviere, Beatrice

    Computational Geosciences, Vol. 25 (2021), Iss. 5 P.1775

    https://doi.org/10.1007/s10596-021-10073-y [Citations: 3]
  10. Mesoscale models of dispersions stabilized by surfactants and colloids

    van der Sman, R.G.M. | Meinders, M.B.J.

    Advances in Colloid and Interface Science, Vol. 211 (2014), Iss. P.63

    https://doi.org/10.1016/j.cis.2014.06.004 [Citations: 20]
  11. Numerical investigation of bubbles coalescence in a shear flow with diffuse-interface model

    Shah, Abdullah | Saeed, Sadia | Khan, Saher Akmal

    Heliyon, Vol. 4 (2018), Iss. 12 P.e01024

    https://doi.org/10.1016/j.heliyon.2018.e01024 [Citations: 5]
  12. Decoupled, energy stable schemes for a phase-field surfactant model

    Zhu, Guangpu | Kou, Jisheng | Sun, Shuyu | Yao, Jun | Li, Aifen

    Computer Physics Communications, Vol. 233 (2018), Iss. P.67

    https://doi.org/10.1016/j.cpc.2018.07.003 [Citations: 49]
  13. Breakage, coalescence and size distribution of surfactant-laden droplets in turbulent flow

    Soligo, Giovanni | Roccon, Alessio | Soldati, Alfredo

    Journal of Fluid Mechanics, Vol. 881 (2019), Iss. P.244

    https://doi.org/10.1017/jfm.2019.772 [Citations: 57]
  14. Unconditionally Energy Stable and Bound-Preserving Schemes for Phase-Field Surfactant Model with Moving Contact Lines

    Wang, Chenxi | Guo, Yichen | Zhang, Zhen

    Journal of Scientific Computing, Vol. 92 (2022), Iss. 1

    https://doi.org/10.1007/s10915-022-01863-2 [Citations: 6]
  15. An improved phase-field-based lattice Boltzmann model for droplet dynamics with soluble surfactant

    Shi, Y. | Tang, G.H. | Cheng, L.H. | Shuang, H.Q.

    Computers & Fluids, Vol. 179 (2019), Iss. P.508

    https://doi.org/10.1016/j.compfluid.2018.11.018 [Citations: 25]
  16. Liquid-vapor transformations with surfactants. Phase-field model and Isogeometric Analysis

    Bueno, Jesus | Gomez, Hector

    Journal of Computational Physics, Vol. 321 (2016), Iss. P.797

    https://doi.org/10.1016/j.jcp.2016.06.008 [Citations: 21]
  17. Improved lattice Boltzmann model for moving contact-line with soluble surfactant

    Xu, Ting | Bian, Xin | Liang, Hong

    Physics of Fluids, Vol. 35 (2023), Iss. 12

    https://doi.org/10.1063/5.0175912 [Citations: 2]
  18. Structure of the fluid interface in an external magnetic field in the presence of a magnetizable surfactant

    Zhukov, A. V.

    Fluid Dynamics, Vol. 51 (2016), Iss. 4 P.463

    https://doi.org/10.1134/S0015462816040049 [Citations: 1]
  19. An improved phase-field algorithm for simulating the impact of a drop on a substrate in the presence of surfactants

    Wang, Chenxi | Lai, Ming-Chih | Zhang, Zhen

    Journal of Computational Physics, Vol. 499 (2024), Iss. P.112722

    https://doi.org/10.1016/j.jcp.2023.112722 [Citations: 1]
  20. A second-order phase field-lattice Boltzmann model with equation of state inputting for two-phase flow containing soluble surfactants

    Zhang, Shi-Ting | Hu, Yang | Li, Qianping | Li, De-Cai | He, Qiang | Niu, Xiao-Dong

    Physics of Fluids, Vol. 36 (2024), Iss. 2

    https://doi.org/10.1063/5.0191792 [Citations: 0]
  21. Thermodynamically consistent modelling of two-phase flows with moving contact line and soluble surfactants

    Zhu, Guangpu | Kou, Jisheng | Yao, Bowen | Wu, Yu-shu | Yao, Jun | Sun, Shuyu

    Journal of Fluid Mechanics, Vol. 879 (2019), Iss. P.327

    https://doi.org/10.1017/jfm.2019.664 [Citations: 117]
  22. Multiphase Phase-Field Lattice Boltzmann Method for Simulation of Soluble Surfactants

    Kian Far, Ehsan | Gorakifard, Mohsen | Fattahi, Ehsan

    Symmetry, Vol. 13 (2021), Iss. 6 P.1019

    https://doi.org/10.3390/sym13061019 [Citations: 7]
  23. A new three dimensional cumulant phase field lattice Boltzmann method to study soluble surfactant

    Kian Far, Ehsan | Gorakifard, Mohsen | Goraki Fard, Mojtaba

    Physics of Fluids, Vol. 35 (2023), Iss. 5

    https://doi.org/10.1063/5.0150083 [Citations: 5]
  24. Turbulent Flows With Drops and Bubbles: What Numerical Simulations Can Tell Us—Freeman Scholar Lecture

    Soligo, Giovanni | Roccon, Alessio | Soldati, Alfredo

    Journal of Fluids Engineering, Vol. 143 (2021), Iss. 8

    https://doi.org/10.1115/1.4050532 [Citations: 27]
  25. Phenomenological Continuum Theory of Asphaltene-Stabilized Oil/Water Emulsions

    Tóth, Gyula I. | Selvåg, Juri | Kvamme, Bjørn

    Energy & Fuels, Vol. 31 (2017), Iss. 2 P.1218

    https://doi.org/10.1021/acs.energyfuels.6b02430 [Citations: 5]
  26. Stable finite element approximations of two-phase flow with soluble surfactant

    Barrett, John W. | Garcke, Harald | Nürnberg, Robert

    Journal of Computational Physics, Vol. 297 (2015), Iss. P.530

    https://doi.org/10.1016/j.jcp.2015.05.029 [Citations: 15]
  27. Numerical Approximation of a Phase-Field Surfactant Model with Fluid Flow

    Zhu, Guangpu | Kou, Jisheng | Sun, Shuyu | Yao, Jun | Li, Aifen

    Journal of Scientific Computing, Vol. 80 (2019), Iss. 1 P.223

    https://doi.org/10.1007/s10915-019-00934-1 [Citations: 34]
  28. Surfactant-laden droplet behavior on wetting solid wall with non-Newtonian fluid rheology

    Shi, Y. | Tang, G. H. | Li, S. G. | Qin, L.

    Physics of Fluids, Vol. 31 (2019), Iss. 9

    https://doi.org/10.1063/1.5122730 [Citations: 4]
  29. A phase-field moving contact line model with soluble surfactants

    Zhu, Guangpu | Kou, Jisheng | Yao, Jun | Li, Aifen | Sun, Shuyu

    Journal of Computational Physics, Vol. 405 (2020), Iss. P.109170

    https://doi.org/10.1016/j.jcp.2019.109170 [Citations: 82]
  30. A variant of stabilized-scalar auxiliary variable (S-SAV) approach for a modified phase-field surfactant model

    Yang, Junxiang | Kim, Junseok

    Computer Physics Communications, Vol. 261 (2021), Iss. P.107825

    https://doi.org/10.1016/j.cpc.2021.107825 [Citations: 31]
  31. Computational Science – ICCS 2020

    Decoupled and Energy Stable Time-Marching Scheme for the Interfacial Flow with Soluble Surfactants

    Zhu, Guangpu | Li, Aifen

    2020

    https://doi.org/10.1007/978-3-030-50436-6_1 [Citations: 0]
  32. Convergence and stability analysis of energy stable and bound‐preserving numerical schemes for binary fluid‐surfactant phase‐field equations

    Duan, Jiayi | Li, Xiao | Qiao, Zhonghua

    Numerical Methods for Partial Differential Equations, Vol. 40 (2024), Iss. 6

    https://doi.org/10.1002/num.23125 [Citations: 0]
  33. Modeling surfactant-laden droplet dynamics by lattice Boltzmann method

    Zong, Yajing | Zhang, Chunhua | Liang, Hong | Wang, Lu | Xu, Jiangrong

    Physics of Fluids, Vol. 32 (2020), Iss. 12

    https://doi.org/10.1063/5.0028554 [Citations: 35]
  34. Analysis of Ginzburg-Landau-type models of surfactant-assisted liquid phase separation

    Tóth, Gyula I. | Kvamme, Bjørn

    Physical Review E, Vol. 91 (2015), Iss. 3

    https://doi.org/10.1103/PhysRevE.91.032404 [Citations: 16]
  35. Linear and fully decoupled scheme for a hydrodynamics coupled phase-field surfactant system based on a multiple auxiliary variables approach

    Yang, Junxiang | Tan, Zhijun | Kim, Junseok

    Journal of Computational Physics, Vol. 452 (2022), Iss. P.110909

    https://doi.org/10.1016/j.jcp.2021.110909 [Citations: 25]
  36. Deforming Fluid Domains Within the Finite Element Method: Five Mesh-Based Tracking Methods in Comparison

    Elgeti, S. | Sauerland, H.

    Archives of Computational Methods in Engineering, Vol. 23 (2016), Iss. 2 P.323

    https://doi.org/10.1007/s11831-015-9143-2 [Citations: 37]
  37. Turbulent drag reduction in water-lubricated channel flow of highly viscous oil

    Roccon, Alessio | Zonta, Francesco | Soldati, Alfredo

    Physical Review Fluids, Vol. 9 (2024), Iss. 5

    https://doi.org/10.1103/PhysRevFluids.9.054611 [Citations: 3]
  38. Investigation of surfactant-laden bubble migration dynamics in self-rewetting fluids using lattice Boltzmann method

    Elbousefi, Bashir | Schupbach, William | Premnath, Kannan N. | Welch, Samuel W. J.

    Physics of Fluids, Vol. 36 (2024), Iss. 11

    https://doi.org/10.1063/5.0233471 [Citations: 0]
  39. Thermodynamically consistent phase-field modelling of activated solute transport in binary solvent fluids

    Kou, Jisheng | Salama, Amgad | Wang, Xiuhua

    Journal of Fluid Mechanics, Vol. 955 (2023), Iss.

    https://doi.org/10.1017/jfm.2023.8 [Citations: 4]
  40. Coalescence of surfactant-laden drops by Phase Field Method

    Soligo, Giovanni | Roccon, Alessio | Soldati, Alfredo

    Journal of Computational Physics, Vol. 376 (2019), Iss. P.1292

    https://doi.org/10.1016/j.jcp.2018.10.021 [Citations: 69]
  41. Morphology of clean and surfactant-laden droplets in homogeneous isotropic turbulence

    Cannon, Ianto | Soligo, Giovanni | Rosti, Marco E.

    Journal of Fluid Mechanics, Vol. 987 (2024), Iss.

    https://doi.org/10.1017/jfm.2024.380 [Citations: 2]
  42. Dynamics of surfactant-laden drops in shear flow by lattice Boltzmann method

    Chen, Zhe (Ashley) | Tsai, Peichun Amy | Komrakova, Alexandra

    Physics of Fluids, Vol. 35 (2023), Iss. 12

    https://doi.org/10.1063/5.0177407 [Citations: 1]
  43. Phase field modelling of spinodal decomposition in the oil/water/asphaltene system

    Tóth, Gyula I. | Kvamme, Bjørn

    Physical Chemistry Chemical Physics, Vol. 17 (2015), Iss. 31 P.20259

    https://doi.org/10.1039/C5CP02357B [Citations: 8]
  44. Efficient, non-iterative, and decoupled numerical scheme for a new modified binary phase-field surfactant system

    Xu, Chen | Chen, Chuanjun | Yang, Xiaofeng

    Numerical Algorithms, Vol. 86 (2021), Iss. 2 P.863

    https://doi.org/10.1007/s11075-020-00915-8 [Citations: 9]
  45. Analysis of improved Lattice Boltzmann phase field method for soluble surfactants

    van der Sman, R.G.M. | Meinders, M.B.J.

    Computer Physics Communications, Vol. 199 (2016), Iss. P.12

    https://doi.org/10.1016/j.cpc.2015.10.002 [Citations: 26]
  46. Well-posedness of a Navier–Stokes–Cahn–Hilliard system for incompressible two-phase flows with surfactant

    Di Primio, Andrea | Grasselli, Maurizio | Wu, Hao

    Mathematical Models and Methods in Applied Sciences, Vol. 33 (2023), Iss. 04 P.755

    https://doi.org/10.1142/S0218202523500173 [Citations: 1]
  47. A new phase-field model for a water–oil-surfactant system

    Yun, Ana | Li, Yibao | Kim, Junseok

    Applied Mathematics and Computation, Vol. 229 (2014), Iss. P.422

    https://doi.org/10.1016/j.amc.2013.12.054 [Citations: 20]
  48. Free-energy-based lattice Boltzmann model for emulsions with soluble surfactant

    Kothari, Yash | Komrakova, Alexandra

    Chemical Engineering Science, Vol. 285 (2024), Iss. P.119609

    https://doi.org/10.1016/j.ces.2023.119609 [Citations: 1]
  49. Phase-field modeling of complex interface dynamics in drop-laden turbulence

    Roccon, Alessio | Zonta, Francesco | Soldati, Alfredo

    Physical Review Fluids, Vol. 8 (2023), Iss. 9

    https://doi.org/10.1103/PhysRevFluids.8.090501 [Citations: 11]