Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes

Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes

Year:    2013

Communications in Computational Physics, Vol. 14 (2013), Iss. 5 : pp. 1174–1206

Abstract

In this article we present a new class of high order accurate ArbitraryEulerian-Lagrangian (ALE) one-step WENO finite volume schemes for solving nonlinear hyperbolic systems of conservation laws on moving two dimensional unstructured triangular meshes. A WENO reconstruction algorithm is used to achieve high order accuracy in space and a high order one-step time discretization is achieved by using the local space-time Galerkin predictor proposed in [25]. For that purpose, a new element-local weak formulation of the governing PDE is adopted on moving space-time elements. The space-time basis and test functions are obtained considering Lagrange interpolation polynomials passing through a predefined set of nodes. Moreover, a polynomial mapping defined by the same local space-time basis functions as the weak solution of the PDE is used to map the moving physical space-time element onto a space-time reference element. To maintain algorithmic simplicity, the final ALE one-step finite volume scheme uses moving triangular meshes with straight edges. This is possible in the ALE framework, which allows a local mesh velocity that is different from the local fluid velocity. We present numerical convergence rates for the schemes presented in this paper up to sixth order of accuracy in space and time and show some classical numerical test problems for the two-dimensional Euler equations of compressible gas dynamics.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.181012.010313a

Communications in Computational Physics, Vol. 14 (2013), Iss. 5 : pp. 1174–1206

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    33

Keywords:   

  1. A class of high-order weighted compact central schemes for solving hyperbolic conservation laws

    Shen, Hua | Jahdali, Rasha Al | Parsani, Matteo

    Journal of Computational Physics, Vol. 466 (2022), Iss. P.111370

    https://doi.org/10.1016/j.jcp.2022.111370 [Citations: 1]
  2. On numerical simulation of flow problems in three dimension: energy conservation in fluid-structure interactions

    Sváček, Petr | Dančová, Petra | Vít, Tomáš

    EPJ Web of Conferences, Vol. 92 (2015), Iss. P.02089

    https://doi.org/10.1051/epjconf/20159202089 [Citations: 0]
  3. A new class of Moving-Least-Squares WENO–SPH schemes

    Avesani, Diego | Dumbser, Michael | Bellin, Alberto

    Journal of Computational Physics, Vol. 270 (2014), Iss. P.278

    https://doi.org/10.1016/j.jcp.2014.03.041 [Citations: 67]
  4. Arbitrary-Lagrangian–Eulerian ADER–WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws

    Dumbser, Michael

    Computer Methods in Applied Mechanics and Engineering, Vol. 280 (2014), Iss. P.57

    https://doi.org/10.1016/j.cma.2014.07.019 [Citations: 36]
  5. An Arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations

    Busto, S. | Dumbser, M. | Río-Martín, L.

    Applied Mathematics and Computation, Vol. 437 (2023), Iss. P.127539

    https://doi.org/10.1016/j.amc.2022.127539 [Citations: 4]
  6. High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes

    Gaburro, Elena | Boscheri, Walter | Chiocchetti, Simone | Klingenberg, Christian | Springel, Volker | Dumbser, Michael

    Journal of Computational Physics, Vol. 407 (2020), Iss. P.109167

    https://doi.org/10.1016/j.jcp.2019.109167 [Citations: 72]
  7. A Massively Parallel Hybrid Finite Volume/Finite Element Scheme for Computational Fluid Dynamics

    Río-Martín, Laura | Busto, Saray | Dumbser, Michael

    Mathematics, Vol. 9 (2021), Iss. 18 P.2316

    https://doi.org/10.3390/math9182316 [Citations: 13]
  8. The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two-dimensions

    Li, Zhenzhen | Yu, Xijun | Jia, Zupeng

    Computers & Fluids, Vol. 96 (2014), Iss. P.152

    https://doi.org/10.1016/j.compfluid.2014.03.018 [Citations: 49]
  9. Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part I: The one-dimensional case

    Vilar, François | Shu, Chi-Wang | Maire, Pierre-Henri

    Journal of Computational Physics, Vol. 312 (2016), Iss. P.385

    https://doi.org/10.1016/j.jcp.2016.02.027 [Citations: 31]
  10. Reprint of: Direct Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes

    Gaburro, Elena | Dumbser, Michael | Castro, Manuel J.

    Computers & Fluids, Vol. 169 (2018), Iss. P.263

    https://doi.org/10.1016/j.compfluid.2018.03.051 [Citations: 3]
  11. Staggered Grid Residual Distribution Scheme for Lagrangian Hydrodynamics

    Abgrall, Rémi | Tokareva, Svetlana

    SIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 5 P.A2317

    https://doi.org/10.1137/16M1078781 [Citations: 17]
  12. FORCE schemes on moving unstructured meshes for hyperbolic systems

    Boscheri, Walter | Dumbser, Michael | Righetti, Maurizio

    Computers & Mathematics with Applications, Vol. 78 (2019), Iss. 2 P.362

    https://doi.org/10.1016/j.camwa.2018.09.008 [Citations: 2]
  13. Advances in Numerical Methods for Hyperbolic Balance Laws and Related Problems

    High-Order Arbitrary-Lagrangian-Eulerian Schemes on Crazy Moving Voronoi Meshes

    Gaburro, Elena | Chiocchetti, Simone

    2023

    https://doi.org/10.1007/978-3-031-29875-2_5 [Citations: 0]
  14. A Posteriori Subcell Finite Volume Limiter for General $$P_NP_M$$ Schemes: Applications from Gasdynamics to Relativistic Magnetohydrodynamics

    Gaburro, Elena | Dumbser, Michael

    Journal of Scientific Computing, Vol. 86 (2021), Iss. 3

    https://doi.org/10.1007/s10915-020-01405-8 [Citations: 19]
  15. A rezoning-free CESE scheme for solving the compressible Euler equations on moving unstructured meshes

    Shen, Hua | Parsani, Matteo

    Journal of Computational Physics, Vol. 397 (2019), Iss. P.108858

    https://doi.org/10.1016/j.jcp.2019.108858 [Citations: 2]
  16. A fully discrete ALE method over untwisted time–space control volumes

    Qi, Jin | Li, Jiequan

    International Journal for Numerical Methods in Fluids, Vol. 83 (2017), Iss. 8 P.625

    https://doi.org/10.1002/fld.4283 [Citations: 1]
  17. An Efficient Quadrature-Free Formulation for High Order Arbitrary-Lagrangian–Eulerian ADER-WENO Finite Volume Schemes on Unstructured Meshes

    Boscheri, W. | Dumbser, M.

    Journal of Scientific Computing, Vol. 66 (2016), Iss. 1 P.240

    https://doi.org/10.1007/s10915-015-0019-2 [Citations: 15]
  18. High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers

    Boscheri, Walter | Pareschi, Lorenzo

    Journal of Computational Physics, Vol. 434 (2021), Iss. P.110206

    https://doi.org/10.1016/j.jcp.2021.110206 [Citations: 48]
  19. Multidimensional Staggered Grid Residual Distribution Scheme for Lagrangian Hydrodynamics

    Abgrall, Rémi | Lipnikov, Konstantin | Morgan, Nathaniel | Tokareva, Svetlana

    SIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 1 P.A343

    https://doi.org/10.1137/18M1223939 [Citations: 13]
  20. Embedment of WENO-Z reconstruction in Lagrangian WLS scheme implemented on GPU for strongly-compressible multi-phase flows

    Jiang, Tao | Liu, Yu-Hang | Meng, Zi-Fei | Sun, Peng-Nan | Wei, Xiang-Yang | Wang, Deng-Shan

    Computer Methods in Applied Mechanics and Engineering, Vol. 430 (2024), Iss. P.117209

    https://doi.org/10.1016/j.cma.2024.117209 [Citations: 0]
  21. Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity

    Peshkov, Ilya | Boscheri, Walter | Loubère, Raphaël | Romenski, Evgeniy | Dumbser, Michael

    Journal of Computational Physics, Vol. 387 (2019), Iss. P.481

    https://doi.org/10.1016/j.jcp.2019.02.039 [Citations: 37]
  22. High order finite volume schemes with IMEX time stepping for the Boltzmann model on unstructured meshes

    Boscheri, Walter | Dimarco, Giacomo

    Computer Methods in Applied Mechanics and Engineering, Vol. 387 (2021), Iss. P.114180

    https://doi.org/10.1016/j.cma.2021.114180 [Citations: 11]
  23. High order space–time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems

    Dumbser, Michael | Hidalgo, Arturo | Zanotti, Olindo

    Computer Methods in Applied Mechanics and Engineering, Vol. 268 (2014), Iss. P.359

    https://doi.org/10.1016/j.cma.2013.09.022 [Citations: 78]
  24. High Order Direct Arbitrary-Lagrangian–Eulerian (ALE) Finite Volume Schemes for Hyperbolic Systems on Unstructured Meshes

    Boscheri, Walter

    Archives of Computational Methods in Engineering, Vol. 24 (2017), Iss. 4 P.751

    https://doi.org/10.1007/s11831-016-9188-x [Citations: 15]
  25. A 3D cell-centered ADER MOOD Finite Volume method for solving updated Lagrangian hyperelasticity on unstructured grids

    Boscheri, Walter | Loubère, Raphaël | Maire, Pierre-Henri

    Journal of Computational Physics, Vol. 449 (2022), Iss. P.110779

    https://doi.org/10.1016/j.jcp.2021.110779 [Citations: 9]
  26. High order direct Arbitrary-Lagrangian-Eulerian (ALE) PP schemes with WENO Adaptive-Order reconstruction on unstructured meshes

    Boscheri, Walter | Balsara, Dinshaw S.

    Journal of Computational Physics, Vol. 398 (2019), Iss. P.108899

    https://doi.org/10.1016/j.jcp.2019.108899 [Citations: 24]
  27. Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity

    Gaburro, Elena | Castro, Manuel J | Dumbser, Michael

    Monthly Notices of the Royal Astronomical Society, Vol. 477 (2018), Iss. 2 P.2251

    https://doi.org/10.1093/mnras/sty542 [Citations: 42]
  28. An arbitrary Lagrangian–Eulerian discontinuous Galerkin method for two‐dimensional compressible flows on adaptive quadrilateral meshes

    Zhao, Xiaolong | Huang, Chaobao | Yu, Xijun | Zou, Shijun | Qing, Fang

    International Journal for Numerical Methods in Fluids, Vol. 95 (2023), Iss. 5 P.796

    https://doi.org/10.1002/fld.5172 [Citations: 0]
  29. Single-Step Arbitrary Lagrangian–Eulerian Discontinuous Galerkin Method for 1-D Euler Equations

    Badwaik, Jayesh | Chandrashekar, Praveen | Klingenberg, Christian

    Communications on Applied Mathematics and Computation, Vol. 2 (2020), Iss. 4 P.541

    https://doi.org/10.1007/s42967-019-00054-5 [Citations: 5]
  30. Recent Advances in CFD for Wind and Tidal Offshore Turbines

    A Higher-Order Chimera Method Based on Moving Least Squares

    Ramírez, Luis | Nogueira, Xesús | Ouro, Pablo | Navarrina, Fermín | Khelladi, Sofiane | Colominas, Ignasi

    2019

    https://doi.org/10.1007/978-3-030-11887-7_7 [Citations: 0]
  31. Arbitrary-Lagrangian–Eulerian Discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    Boscheri, Walter | Dumbser, Michael

    Journal of Computational Physics, Vol. 346 (2017), Iss. P.449

    https://doi.org/10.1016/j.jcp.2017.06.022 [Citations: 69]
  32. An alternative SPH formulation: ADER-WENO-SPH

    Avesani, Diego | Dumbser, Michael | Vacondio, Renato | Righetti, Maurizio

    Computer Methods in Applied Mechanics and Engineering, Vol. 382 (2021), Iss. P.113871

    https://doi.org/10.1016/j.cma.2021.113871 [Citations: 23]
  33. A nodal Godunov method for Lagrangian shock hydrodynamics on unstructured tetrahedral grids

    Waltz, J. | Morgan, N. R. | Canfield, T. R. | Charest, M. R. J. | Wohlbier, J. G.

    International Journal for Numerical Methods in Fluids, Vol. 76 (2014), Iss. 3 P.129

    https://doi.org/10.1002/fld.3928 [Citations: 11]
  34. A direct Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D

    Boscheri, Walter | Dumbser, Michael

    Journal of Computational Physics, Vol. 275 (2014), Iss. P.484

    https://doi.org/10.1016/j.jcp.2014.06.059 [Citations: 106]
  35. High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes

    Boscheri, Walter | Dumbser, Michael | Zanotti, Olindo

    Journal of Computational Physics, Vol. 291 (2015), Iss. P.120

    https://doi.org/10.1016/j.jcp.2015.02.052 [Citations: 26]
  36. High order accurate direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes on moving curvilinear unstructured meshes

    Boscheri, Walter | Dumbser, Michael

    Computers & Fluids, Vol. 136 (2016), Iss. P.48

    https://doi.org/10.1016/j.compfluid.2016.05.020 [Citations: 28]
  37. Efficient, divergence-free, high-order MHD on 3D spherical meshes with optimal geodesic meshing

    Balsara, Dinshaw S | Florinski, Vladimir | Garain, Sudip | Subramanian, Sethupathy | Gurski, Katharine F

    Monthly Notices of the Royal Astronomical Society, Vol. 487 (2019), Iss. 1 P.1283

    https://doi.org/10.1093/mnras/stz1263 [Citations: 13]
  38. A simple diffuse interface approach for compressible flows around moving solids of arbitrary shape based on a reduced Baer–Nunziato model

    Kemm, Friedemann | Gaburro, Elena | Thein, Ferdinand | Dumbser, Michael

    Computers & Fluids, Vol. 204 (2020), Iss. P.104536

    https://doi.org/10.1016/j.compfluid.2020.104536 [Citations: 36]
  39. On improving the efficiency of ADER methods

    Han Veiga, Maria | Micalizzi, Lorenzo | Torlo, Davide

    Applied Mathematics and Computation, Vol. 466 (2024), Iss. P.128426

    https://doi.org/10.1016/j.amc.2023.128426 [Citations: 1]
  40. Direct Arbitrary-Lagrangian–Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws

    Boscheri, Walter | Loubère, Raphaël | Dumbser, Michael

    Journal of Computational Physics, Vol. 292 (2015), Iss. P.56

    https://doi.org/10.1016/j.jcp.2015.03.015 [Citations: 55]
  41. ADER discontinuous Galerkin Material Point Method

    Lakiss, Alaa | Heuzé, Thomas | Tannous, Mikhael | Stainier, Laurent

    International Journal for Numerical Methods in Engineering, Vol. 125 (2024), Iss. 1

    https://doi.org/10.1002/nme.7365 [Citations: 2]
  42. High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems: Applications to compressible multi-phase flows

    Dumbser, Michael | Boscheri, Walter

    Computers & Fluids, Vol. 86 (2013), Iss. P.405

    https://doi.org/10.1016/j.compfluid.2013.07.024 [Citations: 60]
  43. Energy Transfers in Atmosphere and Ocean

    Reducing Spurious Diapycnal Mixing in Ocean Models

    Klingbeil, Knut | Burchard, Hans | Danilov, Sergey | Goetz, Claus | Iske, Armin

    2019

    https://doi.org/10.1007/978-3-030-05704-6_8 [Citations: 3]
  44. High Order Accurate Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD Finite Volume Schemes for Non-Conservative Hyperbolic Systems with Stiff Source Terms

    Boscheri, Walter | Loubère, Raphaël

    Communications in Computational Physics, Vol. 21 (2017), Iss. 1 P.271

    https://doi.org/10.4208/cicp.OA-2015-0024 [Citations: 18]
  45. Efficient Iterative Arbitrary High-Order Methods: an Adaptive Bridge Between Low and High Order

    Micalizzi, Lorenzo | Torlo, Davide | Boscheri, Walter

    Communications on Applied Mathematics and Computation, Vol. (2023), Iss.

    https://doi.org/10.1007/s42967-023-00290-w [Citations: 3]
  46. High Order ADER Schemes for Continuum Mechanics

    Busto, Saray | Chiocchetti, Simone | Dumbser, Michael | Gaburro, Elena | Peshkov, Ilya

    Frontiers in Physics, Vol. 8 (2020), Iss.

    https://doi.org/10.3389/fphy.2020.00032 [Citations: 54]
  47. New Third-Order Finite Volume Unequal-Sized WENO Lagrangian Schemes for Solving Euler Equations

    Tan, Yan | Lv, Hui | Zhu, Jun

    Mathematics, Vol. 11 (2023), Iss. 23 P.4842

    https://doi.org/10.3390/math11234842 [Citations: 0]
  48. Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers

    Boscheri, Walter | Balsara, Dinshaw S. | Dumbser, Michael

    Journal of Computational Physics, Vol. 267 (2014), Iss. P.112

    https://doi.org/10.1016/j.jcp.2014.02.023 [Citations: 61]
  49. Simulation of non-Newtonian viscoplastic flows with a unified first order hyperbolic model and a structure-preserving semi-implicit scheme

    Peshkov, Ilya | Dumbser, Michael | Boscheri, Walter | Romenski, Evgeniy | Chiocchetti, Simone | Ioriatti, Matteo

    Computers & Fluids, Vol. 224 (2021), Iss. P.104963

    https://doi.org/10.1016/j.compfluid.2021.104963 [Citations: 20]
  50. A cell-centered implicit-explicit Lagrangian scheme for a unified model of nonlinear continuum mechanics on unstructured meshes

    Boscheri, Walter | Chiocchetti, Simone | Peshkov, Ilya

    Journal of Computational Physics, Vol. 451 (2022), Iss. P.110852

    https://doi.org/10.1016/j.jcp.2021.110852 [Citations: 10]
  51. An arbitrary Lagrangian-Eulerian RKDG method for compressible Euler equations on unstructured meshes: Single-material flow

    Zhao, Xiaolong | Yu, Xijun | Duan, Maochang | Qing, Fang | Zou, Shijun

    Journal of Computational Physics, Vol. 396 (2019), Iss. P.451

    https://doi.org/10.1016/j.jcp.2019.07.015 [Citations: 10]
  52. An efficient high order direct ALE ADER finite volume scheme with a posteriori limiting for hydrodynamics and magnetohydrodynamics

    Boscheri, Walter

    International Journal for Numerical Methods in Fluids, Vol. 84 (2017), Iss. 2 P.76

    https://doi.org/10.1002/fld.4342 [Citations: 7]
  53. Cell centered direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity

    Boscheri, Walter | Dumbser, Michael | Loubère, Raphaël

    Computers & Fluids, Vol. 134-135 (2016), Iss. P.111

    https://doi.org/10.1016/j.compfluid.2016.05.004 [Citations: 32]
  54. High‐order ADER‐WENO ALE schemes on unstructured triangular meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics

    Boscheri, W. | Dumbser, M. | Balsara, D. S.

    International Journal for Numerical Methods in Fluids, Vol. 76 (2014), Iss. 10 P.737

    https://doi.org/10.1002/fld.3947 [Citations: 63]
  55. An Eulerian-Lagrangian Runge-Kutta finite volume (EL-RK-FV) method for solving convection and convection-diffusion equations

    Nakao, Joseph | Chen, Jiajie | Qiu, Jing-Mei

    Journal of Computational Physics, Vol. 470 (2022), Iss. P.111589

    https://doi.org/10.1016/j.jcp.2022.111589 [Citations: 4]
  56. Second Order ADER Scheme for Unsteady Advection-Diffusion on Moving Overset Grids with a Compact Transmission Condition

    Bergmann, Michel | Carlino, Michele Giuliano | Iollo, Angelo

    SIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 1 P.A524

    https://doi.org/10.1137/21M1393911 [Citations: 5]
  57. An ALE formulation for compressible flows based on multi-moment finite volume method

    Jin, Peng | Deng, Xi | Xiao, Feng

    Engineering Applications of Computational Fluid Mechanics, Vol. 12 (2018), Iss. 1 P.791

    https://doi.org/10.1080/19942060.2018.1527726 [Citations: 1]
  58. A Unified Framework for the Solution of Hyperbolic PDE Systems Using High Order Direct Arbitrary-Lagrangian–Eulerian Schemes on Moving Unstructured Meshes with Topology Change

    Gaburro, Elena

    Archives of Computational Methods in Engineering, Vol. 28 (2021), Iss. 3 P.1249

    https://doi.org/10.1007/s11831-020-09411-7 [Citations: 21]
  59. A High-Order Finite-Volume Method for Compressible Flows on Moving Tetrahedral Grids

    Charest, Marc R. | Canfield, Thomas | Morgan, Nathaniel | Waltz, Jacob | Wohlbier, John

    53rd AIAA Aerospace Sciences Meeting, (2015),

    https://doi.org/10.2514/6.2015-0297 [Citations: 1]
  60. A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids

    Vilar, François | Maire, Pierre-Henri | Abgrall, Rémi

    Journal of Computational Physics, Vol. 276 (2014), Iss. P.188

    https://doi.org/10.1016/j.jcp.2014.07.030 [Citations: 81]
  61. Error Estimates for First- and Second-Order Lagrange–Galerkin Moving Mesh Schemes for the One-Dimensional Convection–Diffusion Equation

    Putri, Kharisma Surya | Mizuochi, Tatsuki | Kolbe, Niklas | Notsu, Hirofumi

    Journal of Scientific Computing, Vol. 101 (2024), Iss. 2

    https://doi.org/10.1007/s10915-024-02673-4 [Citations: 0]
  62. A Novel Staggered Semi-implicit Space-Time Discontinuous Galerkin Method for the Incompressible Navier-Stokes Equations

    Romeo, F. L. | Dumbser, M. | Tavelli, M.

    Communications on Applied Mathematics and Computation, Vol. 3 (2021), Iss. 4 P.607

    https://doi.org/10.1007/s42967-020-00077-3 [Citations: 0]
  63. Direct Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes

    Gaburro, Elena | Dumbser, Michael | Castro, Manuel J.

    Computers & Fluids, Vol. 159 (2017), Iss. P.254

    https://doi.org/10.1016/j.compfluid.2017.09.022 [Citations: 33]
  64. ADER scheme for incompressible Navier-Stokes equations on overset grids with a compact transmission condition

    Bergmann, Michel | Carlino, Michele Giuliano | Iollo, Angelo | Telib, Haysam

    Journal of Computational Physics, Vol. 467 (2022), Iss. P.111414

    https://doi.org/10.1016/j.jcp.2022.111414 [Citations: 3]
  65. High order central WENO-Implicit-Explicit Runge Kutta schemes for the BGK model on general polygonal meshes

    Boscheri, Walter | Dimarco, Giacomo

    Journal of Computational Physics, Vol. 422 (2020), Iss. P.109766

    https://doi.org/10.1016/j.jcp.2020.109766 [Citations: 18]
  66. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables

    Zanotti, Olindo | Dumbser, Michael

    Computational Astrophysics and Cosmology, Vol. 3 (2016), Iss. 1

    https://doi.org/10.1186/s40668-015-0014-x [Citations: 35]
  67. An Unconventional Divergence Preserving Finite-Volume Discretization of Lagrangian Ideal MHD

    Boscheri, Walter | Loubère, Raphaël | Maire, Pierre-Henri

    Communications on Applied Mathematics and Computation, Vol. 6 (2024), Iss. 3 P.1665

    https://doi.org/10.1007/s42967-023-00309-2 [Citations: 0]
  68. An Arbitrary-Lagrangian-Eulerian High-Order Gas-Kinetic Scheme for Three-Dimensional Computations

    Pan, Liang | Xu, Kun

    Journal of Scientific Computing, Vol. 88 (2021), Iss. 1

    https://doi.org/10.1007/s10915-021-01525-9 [Citations: 3]