Flow in Collapsible Tubes with Discontinuous Mechanical Properties: Mathematical Model and Exact Solutions
Year: 2013
Communications in Computational Physics, Vol. 13 (2013), Iss. 2 : pp. 361–385
Abstract
We formulate a one-dimensional time-dependent non-linear mathematical model for some types of physiological fluid flow in collapsible tubes with discontinuous material properties. The resulting 6×6 hyperbolic system is analysed and the associated Riemann problem is solved exactly. Although the solution algorithm deals with idealised cases, it is nonetheless uniquely well-suited for assessing the performance of numerical methods intended for simulating more general situations. Moreover, our model may be a useful starting point for numerical calculations of realistic flows involving rapid and discontinuous material property variations. One important example in mind is the simulation of blood flow in medium-to-large veins in humans. Finally, we also discuss some peculiarities of the model regarding the loss of strict hyperbolicity and uniqueness. In particular we show an example in which the solution of the Riemann problem is non unique.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.210611.240212a
Communications in Computational Physics, Vol. 13 (2013), Iss. 2 : pp. 361–385
Published online: 2013-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 25
-
Low-Shapiro hydrostatic reconstruction technique for blood flow simulation in large arteries with varying geometrical and mechanical properties
Ghigo, A.R. | Delestre, O. | Fullana, J.-M. | Lagrée, P.-Y.Journal of Computational Physics, Vol. 331 (2017), Iss. P.108
https://doi.org/10.1016/j.jcp.2016.11.032 [Citations: 16] -
Numerical coupling of 0D and 1D models in networks of vessels including transonic flow conditions. Application to short‐term transient and stationary hemodynamic simulation of postural changes
Murillo, Javier | García‐Navarro, PilarInternational Journal for Numerical Methods in Biomedical Engineering, Vol. 39 (2023), Iss. 11
https://doi.org/10.1002/cnm.3751 [Citations: 0] -
High-Order Fully Well-Balanced Numerical Methods for One-Dimensional Blood Flow with Discontinuous Properties
Pimentel-García, Ernesto | Müller, Lucas O. | Toro, Eleuterio F. | Parés, CarlosSSRN Electronic Journal , Vol. (2022), Iss.
https://doi.org/10.2139/ssrn.4147172 [Citations: 0] -
Comparison of inviscid and viscid one-dimensional models of blood flow in arteries
Krivovichev, Gerasim V.
Applied Mathematics and Computation, Vol. 418 (2022), Iss. P.126856
https://doi.org/10.1016/j.amc.2021.126856 [Citations: 2] -
AENO: a Novel Reconstruction Method in Conjunction with ADER Schemes for Hyperbolic Equations
Toro, Eleuterio F. | Santacá, Andrea | Montecinos, Gino I. | Celant, Morena | Müller, Lucas O.Communications on Applied Mathematics and Computation, Vol. 5 (2023), Iss. 2 P.776
https://doi.org/10.1007/s42967-021-00147-0 [Citations: 7] -
On the Effects of Boundary Conditions in One-Dimensional Models of Hemodynamics
Krivovichev, Gerasim V.
Mathematics, Vol. 10 (2022), Iss. 21 P.4058
https://doi.org/10.3390/math10214058 [Citations: 1] -
A high‐order local time stepping finite volume solver for one‐dimensional blood flow simulations: application to the ADAN model
Müller, Lucas O. | Blanco, Pablo J. | Watanabe, Sansuke M. | Feijóo, Raúl A.International Journal for Numerical Methods in Biomedical Engineering, Vol. 32 (2016), Iss. 10
https://doi.org/10.1002/cnm.2761 [Citations: 32] -
Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties
Müller, Lucas O. | Parés, Carlos | Toro, Eleuterio F.Journal of Computational Physics, Vol. 242 (2013), Iss. P.53
https://doi.org/10.1016/j.jcp.2013.01.050 [Citations: 91] -
High-order fully well-balanced numerical methods for one-dimensional blood flow with discontinuous properties
Pimentel-García, Ernesto | Müller, Lucas O. | Toro, Eleuterio F. | Parés, CarlosJournal of Computational Physics, Vol. 475 (2023), Iss. P.111869
https://doi.org/10.1016/j.jcp.2022.111869 [Citations: 8] -
Letter Re: Internal jugular and vertebral vein volume flow in patients with clinically isolated syndrome or mild multiple sclerosis and healthy controls: results from a prospective sonographer-blinded study
Sisini, Francesco | Taibi, Angelo | Gambaccini, Mauro | Zamboni, PaoloPhlebology: The Journal of Venous Disease, Vol. 29 (2014), Iss. 8 P.536
https://doi.org/10.1177/0268355513518912 [Citations: 1] -
Uncertainty quantification methodology for hyperbolic systems with application to blood flow in arteries
Petrella, M. | Tokareva, S. | Toro, E.F.Journal of Computational Physics, Vol. 386 (2019), Iss. P.405
https://doi.org/10.1016/j.jcp.2019.02.013 [Citations: 7] -
A Solution of the Junction Riemann Problem for 1D Hyperbolic Balance Laws in Networks including Supersonic Flow Conditions on Elastic Collapsible Tubes
Murillo, Javier | García-Navarro, PilarSymmetry, Vol. 13 (2021), Iss. 9 P.1658
https://doi.org/10.3390/sym13091658 [Citations: 5] -
A Direct Eulerian GRP Scheme for a Blood Flow Model in Arteries
Sheng, Wancheng | Zhang, Qinglong | Zheng, YuxiSIAM Journal on Scientific Computing, Vol. 43 (2021), Iss. 3 P.A1975
https://doi.org/10.1137/19M1284476 [Citations: 6] -
Formulation of exactly balanced solvers for blood flow in elastic vessels and their application to collapsed states
Murillo, J. | Navas-Montilla, A. | García-Navarro, P.Computers & Fluids, Vol. 186 (2019), Iss. P.74
https://doi.org/10.1016/j.compfluid.2019.04.008 [Citations: 13] -
Geometric multiscale modeling of the cardiovascular system, between theory and practice
Quarteroni, A. | Veneziani, A. | Vergara, C.Computer Methods in Applied Mechanics and Engineering, Vol. 302 (2016), Iss. P.193
https://doi.org/10.1016/j.cma.2016.01.007 [Citations: 146] -
Bounds for Wave Speeds in the Riemann Problem: Direct Theoretical Estimates
Toro, E.F. | Müller, L.O. | Siviglia, A.Computers & Fluids, Vol. 209 (2020), Iss. P.104640
https://doi.org/10.1016/j.compfluid.2020.104640 [Citations: 26] -
TV-HLL Solver for One-Dimensional Fluid Flow Inside Elastic Vessels
Kapen, Pascalin Tiam | Tchuen, GhislainInternational Journal of Applied and Computational Mathematics, Vol. 3 (2017), Iss. 2 P.905
https://doi.org/10.1007/s40819-016-0187-2 [Citations: 1] -
Evaluation effect of magnetic field on nanofluid flow through a deformable bifurcated arterial network
Chapal Hossain, S.M. | Zhang, Xin | Liu, Zhifeng | Haider, Zeeshan | Memon, Kashan | Panhwar, Fazil | Mbogba, Momoh karmah | Hu, Peng | Zhao, GangInternational Communications in Heat and Mass Transfer, Vol. 98 (2018), Iss. P.239
https://doi.org/10.1016/j.icheatmasstransfer.2018.09.004 [Citations: 13] -
On the exact solution of the Riemann problem for blood flow in human veins, including collapse
Spiller, C. | Toro, E.F. | Vázquez-Cendón, M.E. | Contarino, C.Applied Mathematics and Computation, Vol. 303 (2017), Iss. P.178
https://doi.org/10.1016/j.amc.2017.01.024 [Citations: 7] -
Analytical solutions of the problems for equations of one-dimensional hemodynamics
Tkachenko, P S | Krivovichev, G VJournal of Physics: Conference Series, Vol. 1400 (2019), Iss. 4 P.044031
https://doi.org/10.1088/1742-6596/1400/4/044031 [Citations: 1] -
Numerical investigation of three-dimensional incompressible fluid flow in curved elastic tube
Ni, Peng | Fang, Dehong | Ai, LiJournal of Intelligent Construction, Vol. 2 (2024), Iss. 3 P.9180023
https://doi.org/10.26599/JIC.2024.9180023 [Citations: 1] -
A semi-implicit finite volume scheme for blood flow in elastic and viscoelastic vessels
Lucca, A. | Busto, S. | Müller, L.O. | Toro, E.F. | Dumbser, M.Journal of Computational Physics, Vol. 495 (2023), Iss. P.112530
https://doi.org/10.1016/j.jcp.2023.112530 [Citations: 2] -
Enhanced global mathematical model for studying cerebral venous blood flow
Müller, Lucas O. | Toro, Eleuterio F.Journal of Biomechanics, Vol. 47 (2014), Iss. 13 P.3361
https://doi.org/10.1016/j.jbiomech.2014.08.005 [Citations: 62] -
Computational haemodynamics in stenotic internal jugular veins
Caiazzo, Alfonso | Montecinos, Gino | Müller, Lucas O. | Haacke, E. Mark | Toro, Eleuterio F.Journal of Mathematical Biology, Vol. 70 (2015), Iss. 4 P.745
https://doi.org/10.1007/s00285-014-0778-7 [Citations: 14] -
Elastic jump propagation across a blood vessel junction
Spelman, Tamsin A. | Onah, Ifeanyi S. | MacTaggart, David | Stewart, Peter S.Royal Society Open Science, Vol. 11 (2024), Iss. 7
https://doi.org/10.1098/rsos.232000 [Citations: 0] -
Fluid mechanical modeling of the upper urinary tract
Zheng, Shaokai | Carugo, Dario | Mosayyebi, Ali | Turney, Ben | Burkhard, Fiona | Lange, Dirk | Obrist, Dominik | Waters, Sarah | Clavica, FrancescoWIREs Mechanisms of Disease, Vol. 13 (2021), Iss. 6
https://doi.org/10.1002/wsbm.1523 [Citations: 21] -
The splitting-based semi-implicit finite-difference schemes for simulation of blood flow in arteries
Krivovichev, Gerasim V.
Computers & Fluids, Vol. 266 (2023), Iss. P.106049
https://doi.org/10.1016/j.compfluid.2023.106049 [Citations: 0] -
A fast method for solving a linear model of one-dimensional blood flow in a viscoelastic arterial tree
Korade, Ivan | Virag, Zdravko | Krizmanić, SeverinoProceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 231 (2017), Iss. 3 P.203
https://doi.org/10.1177/0954411916688718 [Citations: 1] -
Computational analysis of one-dimensional models for simulation of blood flow in vascular networks
Krivovichev, Gerasim V.
Journal of Computational Science, Vol. 62 (2022), Iss. P.101705
https://doi.org/10.1016/j.jocs.2022.101705 [Citations: 8] -
Computational hemodynamics in arteries with the one-dimensional augmented fluid-structure interaction system: viscoelastic parameters estimation and comparison with in-vivo data
Bertaglia, Giulia | Navas-Montilla, Adrián | Valiani, Alessandro | Monge García, Manuel Ignacio | Murillo, Javier | Caleffi, ValerioJournal of Biomechanics, Vol. 100 (2020), Iss. P.109595
https://doi.org/10.1016/j.jbiomech.2019.109595 [Citations: 19] -
Numerical Study of Fluid-Structure Interaction for Blood Flow in Human Viscoelastic Artery
Mal, Tarak Nath | Soni, Bharat | Nayak, Ameeya KumarProceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference December 14-17, 2023, IIT Patna, Patna-801106, Bihar, India, (2024), P.167
https://doi.org/10.1615/IHMTC-2023.280 [Citations: 0] -
Modeling of Mass Transport Processes in Biological Media
Hybrid-dimensional models for blood flow and mass transport: Sequential and embedded 3D-1D models
Formaggia, Luca | Zunino, Paolo2022
https://doi.org/10.1016/B978-0-323-85740-6.00005-4 [Citations: 0] -
ENO-ET: a reconstruction scheme based on extended ENO stencil and truncated highest-order term
Montecinos, Gino I. | Toro, Eleuterio F.Applied Mathematics and Computation, Vol. 442 (2023), Iss. P.127742
https://doi.org/10.1016/j.amc.2022.127742 [Citations: 0] -
Brain venous haemodynamics, neurological diseases and mathematical modelling. A review
Toro, Eleuterio F.
Applied Mathematics and Computation, Vol. 272 (2016), Iss. P.542
https://doi.org/10.1016/j.amc.2015.06.066 [Citations: 28] -
Construction of hybrid 1D‐0D networks for efficient and accurate blood flow simulations
Ghitti, Beatrice | Blanco, Pablo J. | Toro, Eleuterio F. | Müller, Lucas O.International Journal for Numerical Methods in Fluids, Vol. 95 (2023), Iss. 2 P.262
https://doi.org/10.1002/fld.5149 [Citations: 4] -
A fully well-balanced scheme for the 1D blood flow equations with friction source term
Ghitti, Beatrice | Berthon, Christophe | Le, Minh Hoang | Toro, Eleuterio F.Journal of Computational Physics, Vol. 421 (2020), Iss. P.109750
https://doi.org/10.1016/j.jcp.2020.109750 [Citations: 21] -
A Limiting Viscosity Approach to the Riemann Problem in Blood Flow Through Artery
Mondal, Rakib |Bulletin of the Malaysian Mathematical Sciences Society, Vol. 46 (2023), Iss. 6
https://doi.org/10.1007/s40840-023-01579-y [Citations: 1] -
A global multiscale mathematical model for the human circulation with emphasis on the venous system
Müller, Lucas O. | Toro, Eleuterio F.International Journal for Numerical Methods in Biomedical Engineering, Vol. 30 (2014), Iss. 7 P.681
https://doi.org/10.1002/cnm.2622 [Citations: 174] -
Interactions of stationary wave with rarefaction wave and shock wave for a blood flow model in arteries
Sheng, Wancheng | Xu, ShufangZeitschrift für angewandte Mathematik und Physik, Vol. 75 (2024), Iss. 4
https://doi.org/10.1007/s00033-024-02295-8 [Citations: 0] -
A benchmark study of numerical schemes for one‐dimensional arterial blood flow modelling
Boileau, Etienne | Nithiarasu, Perumal | Blanco, Pablo J. | Müller, Lucas O. | Fossan, Fredrik Eikeland | Hellevik, Leif Rune | Donders, Wouter P. | Huberts, Wouter | Willemet, Marie | Alastruey, JordiInternational Journal for Numerical Methods in Biomedical Engineering, Vol. 31 (2015), Iss. 10
https://doi.org/10.1002/cnm.2732 [Citations: 147] -
Well‐balanced high‐order solver for blood flow in networks of vessels with variable properties
Müller, Lucas O. | Toro, Eleuterio F.International Journal for Numerical Methods in Biomedical Engineering, Vol. 29 (2013), Iss. 12 P.1388
https://doi.org/10.1002/cnm.2580 [Citations: 88] -
Second-order well-balanced Lagrange-projection schemes for blood flow equations
Del Grosso, A. | Chalons, C.Calcolo, Vol. 58 (2021), Iss. 4
https://doi.org/10.1007/s10092-021-00434-5 [Citations: 4] -
A global mathematical model for the simulation of stenoses and bypass placement in the human arterial system
Strocchi, M. | Contarino, C. | Zhang, Q. | Bonmassari, R. | Toro, E.F.Applied Mathematics and Computation, Vol. 300 (2017), Iss. P.21
https://doi.org/10.1016/j.amc.2016.11.028 [Citations: 4] -
Modeling blood flow in viscoelastic vessels: the 1D augmented fluid–structure interaction system
Bertaglia, Giulia | Caleffi, Valerio | Valiani, AlessandroComputer Methods in Applied Mechanics and Engineering, Vol. 360 (2020), Iss. P.112772
https://doi.org/10.1016/j.cma.2019.112772 [Citations: 31] -
Flux vector splitting schemes applied to a conservative 1D blood flow model with transport for arteries and veins
Spilimbergo, Alessandra | Toro, Eleuterio F. | Siviglia, Annunziato | Müller, Lucas O.Computers & Fluids, Vol. 271 (2024), Iss. P.106165
https://doi.org/10.1016/j.compfluid.2023.106165 [Citations: 1] -
Multiscale Constitutive Framework of One-Dimensional Blood Flow Modeling: Asymptotic Limits and Numerical Methods
Bertaglia, Giulia | Pareschi, LorenzoMultiscale Modeling & Simulation, Vol. 21 (2023), Iss. 3 P.1237
https://doi.org/10.1137/23M1554230 [Citations: 0] -
Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes
Montecinos, Gino I. | Müller, Lucas O. | Toro, Eleuterio F.Journal of Computational Physics, Vol. 266 (2014), Iss. P.101
https://doi.org/10.1016/j.jcp.2014.02.013 [Citations: 55] -
Variable separated physics-informed neural networks based on adaptive weighted loss functions for blood flow model
Liu, Youqiong | Cai, Li | Chen, Yaping | Ma, Pengfei | Zhong, QianComputers & Mathematics with Applications, Vol. 153 (2024), Iss. P.108
https://doi.org/10.1016/j.camwa.2023.11.018 [Citations: 3] -
High resolution methods for scalar transport problems in compliant systems of arteries
Tavelli, M. | Dumbser, M. | Casulli, V.Applied Numerical Mathematics, Vol. 74 (2013), Iss. P.62
https://doi.org/10.1016/j.apnum.2013.06.009 [Citations: 12] -
A one‐dimensional computational model for blood flow in an elastic blood vessel with a rigid catheter
Pradhan, Aseem Milind | Mut, Fernando | Cebral, Juan RaulInternational Journal for Numerical Methods in Biomedical Engineering, Vol. 40 (2024), Iss. 7
https://doi.org/10.1002/cnm.3834 [Citations: 1] -
Study of pulse wave phenomena associated with blood flow model in human viscoelastic artery
Mal, Tarak Nath | Soni, Bharat | Nayak, Ameeya KumarPhysics of Fluids, Vol. 36 (2024), Iss. 4
https://doi.org/10.1063/5.0189980 [Citations: 2] -
Total Effective Vascular Compliance of a Global Mathematical Model for the Cardiovascular System
Celant, Morena | Toro, Eleuterio F. | Müller, Lucas O.Symmetry, Vol. 13 (2021), Iss. 10 P.1858
https://doi.org/10.3390/sym13101858 [Citations: 4] -
Modeling essential hypertension with a closed‐loop mathematical model for the entire human circulation
Celant, Morena | Toro, Eleuterio F. | Bertaglia, Giulia | Cozzio, Susanna | Caleffi, Valerio | Valiani, Alessandro | Blanco, Pablo J. | Müller, Lucas O.International Journal for Numerical Methods in Biomedical Engineering, Vol. 39 (2023), Iss. 11
https://doi.org/10.1002/cnm.3748 [Citations: 2] -
The initial-boundary problem for the system of 1D equations of non-Newtonian hemodynamics
Krivovichev, Gerasim V
Journal of Physics: Conference Series, Vol. 1697 (2020), Iss. 1 P.012075
https://doi.org/10.1088/1742-6596/1697/1/012075 [Citations: 0] -
Consistent treatment of viscoelastic effects at junctions in one-dimensional blood flow models
Müller, Lucas O. | Leugering, Günter | Blanco, Pablo J.Journal of Computational Physics, Vol. 314 (2016), Iss. P.167
https://doi.org/10.1016/j.jcp.2016.03.012 [Citations: 28] -
Simulation of one‐dimensional blood flow in networks of human vessels using a novel TVD scheme
Huang, P. G. | Muller, L. O.International Journal for Numerical Methods in Biomedical Engineering, Vol. 31 (2015), Iss. 5
https://doi.org/10.1002/cnm.2701 [Citations: 25] -
Handbook of Numerical Methods for Hyperbolic Problems - Basic and Fundamental Issues
The Riemann Problem
Toro, E.F.
2016
https://doi.org/10.1016/bs.hna.2016.09.015 [Citations: 6] -
Junction-Generalized Riemann Problem for stiff hyperbolic balance laws in networks: An implicit solver and ADER schemes
Contarino, Christian | Toro, Eleuterio F. | Montecinos, Gino I. | Borsche, Raul | Kall, JochenJournal of Computational Physics, Vol. 315 (2016), Iss. P.409
https://doi.org/10.1016/j.jcp.2016.03.049 [Citations: 16] -
ADER scheme with a simplified solver for the generalized Riemann problem and an average ENO reconstruction procedure. Application to blood flow
Montecinos, Gino I. | Santacá, Andrea | Celant, Morena | Müller, Lucas O. | Toro, Eleuterio F.Computers & Fluids, Vol. 248 (2022), Iss. P.105685
https://doi.org/10.1016/j.compfluid.2022.105685 [Citations: 5] -
Seven Mathematical Models of Hemorrhagic Shock
Curcio, Luciano | D'Orsi, Laura | De Gaetano, Andrea | Korobeinikov, AndreiComputational and Mathematical Methods in Medicine, Vol. 2021 (2021), Iss. P.1
https://doi.org/10.1155/2021/6640638 [Citations: 3] -
A one-dimensional mathematical model of collecting lymphatics coupled with an electro-fluid-mechanical contraction model and valve dynamics
Contarino, Christian | Toro, Eleuterio F.Biomechanics and Modeling in Mechanobiology, Vol. 17 (2018), Iss. 6 P.1687
https://doi.org/10.1007/s10237-018-1050-7 [Citations: 17] -
Tube law parametrization using in vitro data for one‐dimensional blood flow in arteries and veins
Colombo, Chiara | Siviglia, Annunziato | Toro, Eleuterio F. | Bia, Daniel | Zócalo, Yanina | Müller, Lucas O.International Journal for Numerical Methods in Biomedical Engineering, Vol. 40 (2024), Iss. 4
https://doi.org/10.1002/cnm.3803 [Citations: 0] -
Multiple states for flow through a collapsible tube with discontinuities
Siviglia, A. | Toffolon, M.Journal of Fluid Mechanics, Vol. 761 (2014), Iss. P.105
https://doi.org/10.1017/jfm.2014.635 [Citations: 8] -
Steady analysis of transcritical flows in collapsible tubes with discontinuous mechanical properties: implications for arteries and veins
Siviglia, A. | Toffolon, M.Journal of Fluid Mechanics, Vol. 736 (2013), Iss. P.195
https://doi.org/10.1017/jfm.2013.542 [Citations: 15] -
A Roe type energy balanced solver for 1D arterial blood flow and transport
Murillo, J. | García-Navarro, P.Computers & Fluids, Vol. 117 (2015), Iss. P.149
https://doi.org/10.1016/j.compfluid.2015.05.003 [Citations: 18] -
Riemann problem and Godunov-type scheme for a two-layer blood flow model
Zhang, Qinglong | Sheng, Wancheng | Xiao, TaoApplied Mathematics Letters, Vol. 135 (2023), Iss. P.108437
https://doi.org/10.1016/j.aml.2022.108437 [Citations: 6] -
Modeling blood flow in networks of viscoelastic vessels with the 1-D augmented fluid–structure interaction system
Piccioli, Francesco | Bertaglia, Giulia | Valiani, Alessandro | Caleffi, ValerioJournal of Computational Physics, Vol. 464 (2022), Iss. P.111364
https://doi.org/10.1016/j.jcp.2022.111364 [Citations: 19] -
Uncertainty quantification of viscoelastic parameters in arterial hemodynamics with the a-FSI blood flow model
Bertaglia, Giulia | Caleffi, Valerio | Pareschi, Lorenzo | Valiani, AlessandroJournal of Computational Physics, Vol. 430 (2021), Iss. P.110102
https://doi.org/10.1016/j.jcp.2020.110102 [Citations: 14] -
Impact of CCSVI on cerebral haemodynamics: a mathematical study using MRI angiographic and flow data
Müller, LO | Toro, EF | Haacke, EM | Utriainen, DPhlebology: The Journal of Venous Disease, Vol. 31 (2016), Iss. 5 P.305
https://doi.org/10.1177/0268355515586526 [Citations: 15] -
Cerebrospinal fluid dynamics coupled to the global circulation in holistic setting: Mathematical models, numerical methods and applications
Toro, Eleuterio Francisco | Celant, Morena | Zhang, Qinghui | Contarino, Christian | Agarwal, Nivedita | Linninger, Andreas | Müller, Lucas OmarInternational Journal for Numerical Methods in Biomedical Engineering, Vol. 38 (2022), Iss. 1
https://doi.org/10.1002/cnm.3532 [Citations: 23] -
A high order approximation of hyperbolic conservation laws in networks: Application to one-dimensional blood flow
Müller, Lucas O. | Blanco, Pablo J.Journal of Computational Physics, Vol. 300 (2015), Iss. P.423
https://doi.org/10.1016/j.jcp.2015.07.056 [Citations: 39] -
Analysis of flow parameters of a Newtonian fluid through a cylindrical collapsible tube
Kanyiri, Caroline W. | Kinyanjui, Mathew | Giterere, Kang’etheSpringerPlus, Vol. 3 (2014), Iss. 1
https://doi.org/10.1186/2193-1801-3-566 [Citations: 3] -
The Riemann Problem for the Blood Flow Model with Body Force Term
Sheng, Wancheng | Xu, Shufang | Greco, LeopoldoAdvances in Mathematical Physics, Vol. 2024 (2024), Iss. 1
https://doi.org/10.1155/2024/2992241 [Citations: 0]