Energy Conserving Lattice Boltzmann Models for Incompressible Flow Simulations

Energy Conserving Lattice Boltzmann Models for Incompressible Flow Simulations

Year:    2013

Communications in Computational Physics, Vol. 13 (2013), Iss. 3 : pp. 603–613

Abstract

In this paper, we highlight the benefits resulting from imposing energy-conserving equilibria in entropic lattice Boltzmann models for isothermal flows. The advantages are documented through a series of numerical simulations, such as Taylor-Green vortices, cavity flow and flow past a sphere.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.311011.170412s

Communications in Computational Physics, Vol. 13 (2013), Iss. 3 : pp. 603–613

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:   

  1. Regularized lattice Bhatnagar-Gross-Krook model for two- and three-dimensional cavity flow simulations

    Montessori, A. | Falcucci, G. | Prestininzi, P. | La Rocca, M. | Succi, S.

    Physical Review E, Vol. 89 (2014), Iss. 5

    https://doi.org/10.1103/PhysRevE.89.053317 [Citations: 73]
  2. Thermal lattice Boltzmann flux solver and its application for simulation of incompressible thermal flows

    Wang, Y. | Shu, C. | Teo, C.J.

    Computers & Fluids, Vol. 94 (2014), Iss. P.98

    https://doi.org/10.1016/j.compfluid.2014.02.006 [Citations: 84]
  3. Lattice Boltzmann model for weakly compressible flows

    Kolluru, Praveen Kumar | Atif, Mohammad | Namburi, Manjusha | Ansumali, Santosh

    Physical Review E, Vol. 101 (2020), Iss. 1

    https://doi.org/10.1103/PhysRevE.101.013309 [Citations: 8]
  4. Crystallographic Lattice Boltzmann Method

    Namburi, Manjusha | Krithivasan, Siddharth | Ansumali, Santosh

    Scientific Reports, Vol. 6 (2016), Iss. 1

    https://doi.org/10.1038/srep27172 [Citations: 24]
  5. Diffused bounce-back condition and refill algorithm for the lattice Boltzmann method

    Krithivasan, Siddharth | Wahal, Siddhant | Ansumali, Santosh

    Physical Review E, Vol. 89 (2014), Iss. 3

    https://doi.org/10.1103/PhysRevE.89.033313 [Citations: 27]
  6. An implicit lattice Boltzmann flux solver for simulation of compressible flows

    Zhao, Xiang | Yang, Liming | Shu, Chang

    Computers & Mathematics with Applications, Vol. 107 (2022), Iss. P.82

    https://doi.org/10.1016/j.camwa.2021.12.014 [Citations: 10]
  7. Hydrodynamics in Porous Media: A Finite Volume Lattice Boltzmann Study

    Zarghami, Ahad | Biscarini, Chiara | Succi, Sauro | Ubertini, Stefano

    Journal of Scientific Computing, Vol. 59 (2014), Iss. 1 P.80

    https://doi.org/10.1007/s10915-013-9754-4 [Citations: 28]
  8. Onsager-regularized lattice Boltzmann method: A nonequilibrium thermodynamics-based regularized lattice Boltzmann method

    Jonnalagadda, Anirudh | Sharma, Atul | Agrawal, Amit

    Physical Review E, Vol. 104 (2021), Iss. 1

    https://doi.org/10.1103/PhysRevE.104.015313 [Citations: 5]
  9. A moment conservation-based non-free parameter compressible lattice Boltzmann model and its application for flux evaluation at cell interface

    Yang, L.M. | Shu, C. | Wu, J.

    Computers & Fluids, Vol. 79 (2013), Iss. P.190

    https://doi.org/10.1016/j.compfluid.2013.03.020 [Citations: 40]
  10. QUASIEQUILIBRIUM LATTICE BOLTZMANN MODELS WITH TUNABLE PRANDTL NUMBER FOR INCOMPRESSIBLE HYDRODYNAMICS

    THANTANAPALLY, CHAKRADHAR | SINGH, SHIWANI | PATIL, DHIRAJ V. | SUCCI, SAURO | ANSUMALI, SANTOSH

    International Journal of Modern Physics C, Vol. 24 (2013), Iss. 12 P.1340004

    https://doi.org/10.1142/S0129183113400044 [Citations: 19]
  11. Chaotic Lid-Driven Square Cavity Flows at Extreme Reynolds Numbers

    Garcia, Salvador

    Communications in Computational Physics, Vol. 15 (2014), Iss. 3 P.596

    https://doi.org/10.4208/cicp.070513.220713a [Citations: 3]