Lattice Boltzmann Simulation of Cavitating Flows

Lattice Boltzmann Simulation of Cavitating Flows

Year:    2013

Communications in Computational Physics, Vol. 13 (2013), Iss. 3 : pp. 685–695

Abstract

The onset of cavitating conditions inside the nozzle of liquid injectors is known to play a major role on spray characteristics, especially on jet penetration and break-up. In this work, we present a Direct Numerical Simulation (DNS) based on the Lattice Boltzmann Method (LBM) to study the fluid dynamic field inside the nozzle of a cavitating injector. The formation of the cavitating region is determined via a multi-phase approach based on the Shan-Chen equation of state. The results obtained by the LBM simulation show satisfactory agreement with both numerical and experimental data. In addition, numerical evidence of bubble break-up, following upon flow-induced cavitation, is also reported.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.291011.270112s

Communications in Computational Physics, Vol. 13 (2013), Iss. 3 : pp. 685–695

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:   

  1. Dynamics of an acoustically driven cavitation bubble cluster in the vicinity of a solid surface

    Ezzatneshan, Eslam | Vaseghnia, Hamed

    Physics of Fluids, Vol. 33 (2021), Iss. 12

    https://doi.org/10.1063/5.0075290 [Citations: 21]
  2. Multiphase Lattice Boltzmann Methods: Theory and Application

    References

    2015

    https://doi.org/10.1002/9781118971451.refs [Citations: 0]
  3. Direct numerical evidence of stress-induced cavitation

    Falcucci, G. | Jannelli, E. | Ubertini, S. | Succi, S.

    Journal of Fluid Mechanics, Vol. 728 (2013), Iss. P.362

    https://doi.org/10.1017/jfm.2013.271 [Citations: 52]
  4. Lattice Boltzmann Simulation of Cavitating Flow in a Two-Dimensional Nozzle with Moving Needle Valve

    Yang, Fan | Dai, Mengyao | Jin, Hu

    Processes, Vol. 12 (2024), Iss. 4 P.813

    https://doi.org/10.3390/pr12040813 [Citations: 0]
  5. Multidimensional Modeling of SCR Systems via the Lattice Boltzmann Method

    Krastev, Vesselin | Di Ilio, Giovanni | Bella, Gino | Ubertini, Stefano | Falcucci, Giacomo

    SAE Technical Paper Series, (2019),

    https://doi.org/10.4271/2019-24-0048 [Citations: 0]
  6. An interpolation-based lattice Boltzmann method for non-conforming orthogonal meshes

    Pellerin, Nicolas | Leclaire, Sébastien | Reggio, Marcelo

    Computers & Mathematics with Applications, Vol. 100 (2021), Iss. P.152

    https://doi.org/10.1016/j.camwa.2021.09.002 [Citations: 2]
  7. Experimental Study on Influences of Surface Materials on Cavitation Flow Around Hydrofoils

    Hao, Jiafeng | Zhang, Mindi | Huang, Xu

    Chinese Journal of Mechanical Engineering, Vol. 32 (2019), Iss. 1

    https://doi.org/10.1186/s10033-019-0355-5 [Citations: 6]
  8. Handbook of Hydroinformatics

    Lattice Boltzmann method and its applications

    Delavar, Mojtaba Aghajani | Wang, Junye

    2023

    https://doi.org/10.1016/B978-0-12-821285-1.00001-4 [Citations: 1]
  9. Direct Numerical Simulation of Flow Induced Cavitation in Orifices

    Falcucci, Giacomo | Jannelli, Elio | Ubertini, Stefano | Bella, Gino

    SAE International Journal of Fuels and Lubricants, Vol. 6 (2013), Iss. 3 P.915

    https://doi.org/10.4271/2013-24-0005 [Citations: 4]
  10. Simulation of binary droplet collision with different angles based on a pseudopotential multiple-relaxation-time lattice Boltzmann model

    An, Xiang | Dong, Bo | Li, Weizhong | Zhou, Xun | Sun, Tao

    Computers & Mathematics with Applications, Vol. 92 (2021), Iss. P.76

    https://doi.org/10.1016/j.camwa.2021.03.036 [Citations: 8]
  11. Single-component multiphase lattice Boltzmann simulation of free bubble and crevice heterogeneous cavitation nucleation

    Peng, Chi | Tian, Shouceng | Li, Gensheng | Sukop, Michael C.

    Physical Review E, Vol. 98 (2018), Iss. 2

    https://doi.org/10.1103/PhysRevE.98.023305 [Citations: 36]
  12. Heat flux characteristics during growth and collapse of wall-attached cavitation bubbles with different wall wettability: A lattice Boltzmann study

    He, Xiaolong | Song, Xiang | Peng, Haonan | Huang, Wei | Zhang, Jianmin

    Ocean Engineering, Vol. 276 (2023), Iss. P.114261

    https://doi.org/10.1016/j.oceaneng.2023.114261 [Citations: 9]
  13. Numerical study of cavitation in centrifugal pump conveying different liquid materials

    Deng, Song-Sheng | Li, Guo-Dong | Guan, Jin-Fa | Chen, Xao-Chen | Liu, Lu-Xing

    Results in Physics, Vol. 12 (2019), Iss. P.1834

    https://doi.org/10.1016/j.rinp.2019.02.009 [Citations: 22]
  14. Cavitation inception of a van der Waals fluid at a sack-wall obstacle

    Kähler, G. | Bonelli, F. | Gonnella, G. | Lamura, A.

    Physics of Fluids, Vol. 27 (2015), Iss. 12

    https://doi.org/10.1063/1.4937595 [Citations: 28]
  15. Lattice Boltzmann simulation of low-Reynolds-number cavitating contracting-nozzle flow interacting with a moving valve

    Luo, Tianpei | Xia, Jun

    AIP Advances, Vol. 10 (2020), Iss. 12

    https://doi.org/10.1063/5.0026309 [Citations: 2]
  16. Cavitation and Bubble Dynamics

    Review of Numerical Methodologies for Modeling Cavitation

    Stavropoulos-Vasilakis, Evangelos | Kyriazis, Nikolaos | Jadidbonab, Hesamaldin | Koukouvinis, Phoevos | Gavaises, Manolis

    2021

    https://doi.org/10.1016/B978-0-12-823388-7.00004-7 [Citations: 2]
  17. Wall Wettability Effect on Process of Collapse of Single Cavitation Bubbles in Near-Wall Region Using Pseudo-Potential Lattice Boltzmann Method

    Yang, Qian | He, Xiaolong | Peng, Haonan | Zhang, Jianmin

    SSRN Electronic Journal , Vol. (2022), Iss.

    https://doi.org/10.2139/ssrn.4189303 [Citations: 0]
  18. Thermodynamics of the inception and interactions of multiple laser-produced cavitation bubbles using the lattice Boltzmann method

    He, Xiaolong | Peng, Haonan | Zhang, Jianmin | Yuan, Hao

    Computers & Fluids, Vol. 252 (2023), Iss. P.105771

    https://doi.org/10.1016/j.compfluid.2022.105771 [Citations: 9]
  19. Multiple vapor cavitation bubble interactions with a thermal lattice Boltzmann method

    He, Xiaolong | Peng, Haonan | Zhang, Jianmin | Yuan, Hao

    Ocean Engineering, Vol. 266 (2022), Iss. P.113058

    https://doi.org/10.1016/j.oceaneng.2022.113058 [Citations: 17]
  20. Compressibility in lattice Boltzmann on standard stencils: effects of deviation from reference temperature

    Hosseini, S. A. | Darabiha, N. | Thévenin, D.

    Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 378 (2020), Iss. 2175 P.20190399

    https://doi.org/10.1098/rsta.2019.0399 [Citations: 25]
  21. Lattice-Boltzmann simulation of induced cavitation in protruding structure

    Sun, Zhixin | Cao, Hongzhang | Shan, Long | Hu, Xuegong

    Numerical Heat Transfer, Part A: Applications, Vol. 76 (2019), Iss. 6 P.465

    https://doi.org/10.1080/10407782.2019.1637226 [Citations: 2]
  22. Modelling cavitation during drop impact on solid surfaces

    Kyriazis, Nikolaos | Koukouvinis, Phoevos | Gavaises, Manolis

    Advances in Colloid and Interface Science, Vol. 260 (2018), Iss. P.46

    https://doi.org/10.1016/j.cis.2018.08.004 [Citations: 35]
  23. Wall wettability effect on process of collapse of single cavitation bubbles in near-wall region using pseudo-potential lattice Boltzmann method

    Yang, Qian | He, Xiaolong | Peng, Haonan | Zhang, Jianmin

    Heliyon, Vol. 8 (2022), Iss. 12 P.e12636

    https://doi.org/10.1016/j.heliyon.2022.e12636 [Citations: 6]
  24. Ligament break-up simulation through pseudo-potential lattice Boltzmann method

    Chiappini, Daniele | Xue, Xiao | Falcucci, Giacomo | Sbragaglia, Mauro

    (2018) P.420003

    https://doi.org/10.1063/1.5044006 [Citations: 5]
  25. Deciphering surface tension effects of double cavitation bubbles interaction: A lattice Boltzmann study

    He, Xiaolong | Song, Xiang | Zhang, Jianmin | Peng, Haonan | Zhou, Shiliang

    International Journal of Thermal Sciences, Vol. 189 (2023), Iss. P.108266

    https://doi.org/10.1016/j.ijthermalsci.2023.108266 [Citations: 9]
  26. Phase-field lattice Boltzmann model for two-phase flows with large density ratio

    Zhang, Shengyuan | Tang, Jun | Wu, Huiying

    Physical Review E, Vol. 105 (2022), Iss. 1

    https://doi.org/10.1103/PhysRevE.105.015304 [Citations: 8]
  27. A Novel Semi-Visualizable Experimental Study of a Plate Gravity Heat Pipe at Unsteady State

    Gou, Xiang | Li, Yamei | Zhang, Qiyan | Shah, Imran | Zhao, Dong | Liu, Shian | Wang, Yating | Wang, Enyu | Wu, Jinxiang

    Energies, Vol. 10 (2017), Iss. 12 P.1994

    https://doi.org/10.3390/en10121994 [Citations: 6]
  28. Study of surface wettability effect on cavitation inception by implementation of the lattice Boltzmann method

    Ezzatneshan, Eslam

    Physics of Fluids, Vol. 29 (2017), Iss. 11

    https://doi.org/10.1063/1.4990876 [Citations: 55]
  29. Wall wettability effects on the collapse of the attached vapor cavitation bubble with a thermal lattice Boltzmann method

    He, Xiaolong | Peng, Haonan | Zhang, Jianmin | Liu, Yang

    International Communications in Heat and Mass Transfer, Vol. 140 (2023), Iss. P.106529

    https://doi.org/10.1016/j.icheatmasstransfer.2022.106529 [Citations: 14]
  30. A lattice Boltzmann investigation of liquid viscosity effects on the evolution of a cavitation bubble attached to chemically patterned walls

    He, Xiaolong | Peng, Haonan | Zhang, Jianmin

    Physics of Fluids, Vol. 35 (2023), Iss. 9

    https://doi.org/10.1063/5.0169239 [Citations: 8]
  31. Wall Wettability Effects on the Collapse of the Attached Vapor Cavitation Bubble with a Thermal Lattice Boltzmann Method

    He, Xiaolong | Peng, Haonan | Zhang, Jianmin | Liu, Yang

    SSRN Electronic Journal , Vol. (2022), Iss.

    https://doi.org/10.2139/ssrn.4179227 [Citations: 0]
  32. Development of an Effective FVLBM Code for the Study of Turbulent and Multiphase Flows

    Baglin, Andrew | Barber, Tracie J. | Rosengarten, Gary

    Applied Mechanics and Materials, Vol. 553 (2014), Iss. P.180

    https://doi.org/10.4028/www.scientific.net/AMM.553.180 [Citations: 0]
  33. Numerical study on collapsing cavitation bubble dynamics in cryogenic fluids

    Ezzatneshan, Eslam | Salehi, Ashkan | Vaseghnia, Hamed

    Cryogenics, Vol. 141 (2024), Iss. P.103879

    https://doi.org/10.1016/j.cryogenics.2024.103879 [Citations: 0]
  34. Direct Numerical Simulation of SCR Reactors through Kinetic Approach

    Krastev, Vesselin Krassimirov | Amati, Giorgio | Jannelli, Elio | Falcucci, Giacomo

    SAE Technical Paper Series, (2016),

    https://doi.org/10.4271/2016-01-0963 [Citations: 8]
  35. Three-dimensional central-moment pseudopotential lattice Boltzmann model with improved discrete additional term

    Zhang, Shengyuan | Wu, Huiying | Lin, Shifeng | Jiang, Guizhong | Liu, Zhenyu

    Physics of Fluids, Vol. 36 (2024), Iss. 10

    https://doi.org/10.1063/5.0226635 [Citations: 0]