Effects of Inertia and Viscosity on Single Droplet Deformation in Confined Shear Flow

Effects of Inertia and Viscosity on Single Droplet Deformation in Confined Shear Flow

Year:    2013

Communications in Computational Physics, Vol. 13 (2013), Iss. 3 : pp. 706–724

Abstract

Lattice Boltzmann simulations based on the Cahn-Hilliard diffuse interface approach are performed for droplet dynamics in viscous fluid under shear flow, where the degree of confinement between two parallel walls can play an important role. The effects of viscosity ratio, capillary number, Reynolds number, and confinement ratio on droplet deformation and break-up in moderately and highly confined shear flows are investigated.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.431011.260112s

Communications in Computational Physics, Vol. 13 (2013), Iss. 3 : pp. 706–724

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    19

Keywords:   

  1. Drop breakup and drop pair coalescence using front-tracking method in three dimensions

    Razizadeh, M. | Mortazavi, S. | Shahin, H.

    Acta Mechanica, Vol. 229 (2018), Iss. 3 P.1021

    https://doi.org/10.1007/s00707-017-1958-5 [Citations: 7]
  2. Deformation and breakup of a confined droplet in shear flows with power-law rheology

    Wang, Ningning | Liu, Haihu | Zhang, Chuhua

    Journal of Rheology, Vol. 61 (2017), Iss. 4 P.741

    https://doi.org/10.1122/1.4984757 [Citations: 35]
  3. On the macroscopic modeling of dilute emulsions under flow in the presence of particle inertia

    Mwasame, Paul M. | Wagner, Norman J. | Beris, Antony N.

    Physics of Fluids, Vol. 30 (2018), Iss. 3

    https://doi.org/10.1063/1.5001477 [Citations: 7]
  4. A hybrid ψ-v HOC approach for surface tension driven flows in level set framework

    Mittal, H.V.R. | Kalita, Jiten C. | Al-Mdallal, Qasem M.

    Computers & Mathematics with Applications, Vol. 79 (2020), Iss. 8 P.2350

    https://doi.org/10.1016/j.camwa.2019.11.004 [Citations: 0]
  5. Does dispersed phase inertia affect the shape of sheared emulsion droplets?

    Preziosi, Valentina | Tarafder, Anik | Tomaiuolo, Giovanna | Sarkar, Kausik | Guido, Stefano

    Physics of Fluids, Vol. 36 (2024), Iss. 7

    https://doi.org/10.1063/5.0219152 [Citations: 0]
  6. The confined stresslet for suspensions in a spherical cavity. Part 1. Traceless elements

    Gonzalez, Emma | Zia, Roseanna N.

    Journal of Fluid Mechanics, Vol. 999 (2024), Iss.

    https://doi.org/10.1017/jfm.2024.917 [Citations: 0]
  7. Droplet dynamics in confinement

    Ioannou, N. | Liu, H. | Zhang, Y.H.

    Journal of Computational Science, Vol. 17 (2016), Iss. P.463

    https://doi.org/10.1016/j.jocs.2016.03.009 [Citations: 42]
  8. Sub-Kolmogorov droplet dynamics in isotropic turbulence using a multiscale lattice Boltzmann scheme

    Milan, Felix | Biferale, Luca | Sbragaglia, Mauro | Toschi, Federico

    Journal of Computational Science, Vol. 45 (2020), Iss. P.101178

    https://doi.org/10.1016/j.jocs.2020.101178 [Citations: 6]
  9. A review on emulsification via microfluidic processes

    Liu, Yichen | Li, Yongli | Hensel, Andreas | Brandner, Juergen J. | Zhang, Kai | Du, Xiaoze | Yang, Yongping

    Frontiers of Chemical Science and Engineering, Vol. 14 (2020), Iss. 3 P.350

    https://doi.org/10.1007/s11705-019-1894-0 [Citations: 26]
  10. An Enhanced Mapping Interpolation ISPH–FVM Coupling Method for Simulating Two-Phase Flows with Complex Interfaces

    Xu, Yixiang | Yang, Gang | Hu, Dean

    International Journal of Computational Methods, Vol. 21 (2024), Iss. 06

    https://doi.org/10.1142/S0219876224500099 [Citations: 1]
  11. Hydrodynamic collision and deformation of compound droplet pairs in confined shear flow

    Al Mamun, S. M. Abdullah | Farokhirad, Samaneh

    Physics of Fluids, Vol. 36 (2024), Iss. 2

    https://doi.org/10.1063/5.0187395 [Citations: 1]
  12. Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver

    Mohammadi-Shad, Mahmood | Lee, Taehun

    Physical Review E, Vol. 96 (2017), Iss. 1

    https://doi.org/10.1103/PhysRevE.96.013306 [Citations: 17]
  13. A Correct Benchmark Problem of a Two-Dimensional Droplet Deformation in Simple Shear Flow

    Yang, Junxiang | Li, Yibao | Kim, Junseok

    Mathematics, Vol. 10 (2022), Iss. 21 P.4092

    https://doi.org/10.3390/math10214092 [Citations: 5]
  14. Coalescence-induced jumping of droplet: Inertia and viscosity effects

    Farokhirad, Samaneh | Morris, Jeffrey F. | Lee, Taehun

    Physics of Fluids, Vol. 27 (2015), Iss. 10

    https://doi.org/10.1063/1.4932085 [Citations: 83]
  15. A lattice Boltzmann model for computing compressible two-phase flows with high density ratio

    Yazdi, Hossein | Rahimian, Mohammad Hassan | Safari, Hesameddin

    SN Applied Sciences, Vol. 2 (2020), Iss. 1

    https://doi.org/10.1007/s42452-019-1872-7 [Citations: 0]
  16. Numerical simulations for the rheological characteristics of emulsions under several conditions including temperature, shear rate, surfactant concentration and droplet size

    Choi, Se Bin | Lee, Jung Shin | Baik, Seung Joo | Lee, Joon Sang

    Micro & Nano Letters, Vol. 9 (2014), Iss. 12 P.896

    https://doi.org/10.1049/mnl.2014.0426 [Citations: 3]
  17. Droplet dynamics in rotating flows

    Maneshian, B. | Javadi, Kh. | Rahni, M. Taeibi | Miller, R.

    Advances in Colloid and Interface Science, Vol. 236 (2016), Iss. P.63

    https://doi.org/10.1016/j.cis.2016.07.005 [Citations: 5]
  18. An alternative phase-field interfacial tension force representation for binary fluid systems

    Vasilopoulos, Yannis

    Physics of Fluids, Vol. 32 (2020), Iss. 10

    https://doi.org/10.1063/5.0026195 [Citations: 8]
  19. Advection-enhanced heat and mass transport from neutrally suspended droplet in simple shear flow

    Wang, Yanxing | Vazquez Alvarez, David | Wan, Hui | Gonzalez Pizarro, Ruben | Shu, Fangjun

    Physics of Fluids, Vol. 35 (2023), Iss. 6

    https://doi.org/10.1063/5.0153117 [Citations: 3]
  20. Steady-state deformation behavior of confined composite droplets under shear flow

    Patlazhan, Stanislav | Vagner, Sergei | Kravchenko, Igor

    Physical Review E, Vol. 91 (2015), Iss. 6

    https://doi.org/10.1103/PhysRevE.91.063002 [Citations: 16]
  21. Droplet Dynamics of Newtonian and Inelastic Non-Newtonian Fluids in Confinement

    Ioannou, Nikolaos | Liu, Haihu | Oliveira, Mónica | Zhang, Yonghao

    Micromachines, Vol. 8 (2017), Iss. 2 P.57

    https://doi.org/10.3390/mi8020057 [Citations: 8]
  22. Lattice Boltzmann simulations of droplet breakup in confined and time-dependent flows

    Milan, Felix | Biferale, Luca | Sbragaglia, Mauro | Toschi, Federico

    Physical Review Fluids, Vol. 5 (2020), Iss. 3

    https://doi.org/10.1103/PhysRevFluids.5.033607 [Citations: 7]
  23. Computational study of microparticle effect on self-propelled jumping of droplets from superhydrophobic substrates

    Farokhirad, Samaneh | Lee, Taehun

    International Journal of Multiphase Flow, Vol. 95 (2017), Iss. P.220

    https://doi.org/10.1016/j.ijmultiphaseflow.2017.05.008 [Citations: 17]
  24. Dynamics of a droplet in shear flow by smoothed particle hydrodynamics

    Wang, Kuiliang | Liang, Hong | Zhao, Chong | Bian, Xin

    Frontiers in Physics, Vol. 11 (2023), Iss.

    https://doi.org/10.3389/fphy.2023.1286217 [Citations: 0]
  25. A coupled immersed interface and level set method for simulation of interfacial flows steered by surface tension

    Mittal, H. V. R. | Ray, Rajendra K. | Gadêlha, Hermes | Patil, Dhiraj V.

    Experimental and Computational Multiphase Flow, Vol. 3 (2021), Iss. 1 P.21

    https://doi.org/10.1007/s42757-019-0050-x [Citations: 7]
  26. Transient Deformation and Breakup of a Droplet in Confined Shear Flow

    Qu, Qiulin | Liu, Fanglin | Liu, Peiqing | Agarwal, Ramesh K.

    55th AIAA Aerospace Sciences Meeting, (2017),

    https://doi.org/10.2514/6.2017-1467 [Citations: 0]
  27. Numerical simulation of pressure-driven phase-change in two-phase fluid flows using the Lattice Boltzmann Method

    Yazdi, Hossein | Rahimiani, Mohammad Hassan | Safari, Hesameddin

    Computers & Fluids, Vol. 172 (2018), Iss. P.8

    https://doi.org/10.1016/j.compfluid.2018.06.015 [Citations: 6]