Validation of Pore-Scale Simulations of Hydrodynamic Dispersion in Random Sphere Packings

Validation of Pore-Scale Simulations of Hydrodynamic Dispersion in Random Sphere Packings

Year:    2013

Communications in Computational Physics, Vol. 13 (2013), Iss. 3 : pp. 801–822

Abstract

We employ the lattice Boltzmann method and random walk particle tracking to simulate the time evolution of hydrodynamic dispersion in bulk, random, monodisperse, hard-sphere packings with bed porosities (interparticle void volume fractions) between the random-close and the random-loose packing limit. Using Jodrey-Tory and Monte Carlo-based algorithms and a systematic variation of the packing protocols we generate a portfolio of packings, whose microstructures differ in their degree of heterogeneity (DoH). Because the DoH quantifies the heterogeneity of the void space distribution in a packing, the asymptotic longitudinal dispersion coefficient calculated for the packings increases with the packings' DoH. We investigate the influence of packing length (up to 150 dp, where dp is the sphere diameter) and grid resolution (up to 90 nodes per dp) on the simulated hydrodynamic dispersion coefficient, and demonstrate that the chosen packing dimensions of 10 dp×10 dp×70 dp and the employed grid resolution of 60 nodes per dp are sufficient to observe asymptotic behavior of the dispersion coefficient and to minimize finite size effects. Asymptotic values of the dispersion coefficients calculated for the generated packings are compared with simulated as well as experimental data from the literature and yield good to excellent agreement.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.361011.260112s

Communications in Computational Physics, Vol. 13 (2013), Iss. 3 : pp. 801–822

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    22

Keywords:   

  1. Colloidal and Sedimentation Behavior of Kaolinite Suspension in Presence of Non-Ionic Polyacrylamide (PAM)

    Abbasi Moud, Aref

    Gels, Vol. 8 (2022), Iss. 12 P.807

    https://doi.org/10.3390/gels8120807 [Citations: 6]
  2. Particle size distribution and column efficiency. An ongoing debate revived with 1.9μm Titan-C18 particles

    Gritti, Fabrice | Bell, David S. | Guiochon, Georges

    Journal of Chromatography A, Vol. 1355 (2014), Iss. P.179

    https://doi.org/10.1016/j.chroma.2014.06.029 [Citations: 36]
  3. Effective diffusion coefficients in random packings of polydisperse hard spheres from two-point and three-point correlation functions

    Hlushkou, D. | Liasneuski, H. | Tallarek, U. | Torquato, S.

    Journal of Applied Physics, Vol. 118 (2015), Iss. 12

    https://doi.org/10.1063/1.4931153 [Citations: 35]
  4. Sol‐Gel and Porous Glass‐Based Silica Monoliths with Hierarchical Pore Structure for Solid‐Liquid Catalysis

    Enke, Dirk | Gläser, Roger | Tallarek, Ulrich

    Chemie Ingenieur Technik, Vol. 88 (2016), Iss. 11 P.1561

    https://doi.org/10.1002/cite.201600049 [Citations: 65]
  5. Impact of microstructure on the effective diffusivity in random packings of hard spheres

    Liasneuski, H. | Hlushkou, D. | Khirevich, S. | Höltzel, A. | Tallarek, U. | Torquato, S.

    Journal of Applied Physics, Vol. 116 (2014), Iss. 3

    https://doi.org/10.1063/1.4889821 [Citations: 63]
  6. A numerical model for the transport and drying of solutions in thin porous media — Coffee-stain effect and solute ring formation

    Wang, S. | Darhuber, A.A.

    Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 682 (2024), Iss. P.132839

    https://doi.org/10.1016/j.colsurfa.2023.132839 [Citations: 2]
  7. The quantitative impact of the mesopore size on the mass transfer mechanism of the new 1.9 μm fully porous Titan-C18 particles. I: Analysis of small molecules

    Gritti, Fabrice | Guiochon, Georges

    Journal of Chromatography A, Vol. 1384 (2015), Iss. P.76

    https://doi.org/10.1016/j.chroma.2015.01.047 [Citations: 17]
  8. The van Deemter equation: Assumptions, limits, and adjustment to modern high performance liquid chromatography

    Gritti, Fabrice | Guiochon, Georges

    Journal of Chromatography A, Vol. 1302 (2013), Iss. P.1

    https://doi.org/10.1016/j.chroma.2013.06.032 [Citations: 86]
  9. Solute Sorption, Diffusion, and Advection in Macro–Mesoporous Materials: Toward a Realistic Bottom-Up Simulation Strategy

    Tallarek, Ulrich | Hlushkou, Dzmitry | Höltzel, Alexandra

    The Journal of Physical Chemistry C, Vol. 126 (2022), Iss. 5 P.2336

    https://doi.org/10.1021/acs.jpcc.1c10137 [Citations: 14]
  10. Determination of dynamic dispersion coefficients for passive and reactive particles flowing in a circular tube

    Meng, Xiaoyan | Yang, Daoyong

    Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 524 (2017), Iss. P.96

    https://doi.org/10.1016/j.colsurfa.2017.04.030 [Citations: 11]
  11. Perspectives on the Evolution of the Column Efficiency in Liquid Chromatography

    Gritti, Fabrice | Guiochon, Georges

    Analytical Chemistry, Vol. 85 (2013), Iss. 6 P.3017

    https://doi.org/10.1021/ac3033307 [Citations: 103]
  12. Generating digital twins of mesoporous silica by graph-based stochastic microstructure modeling

    Prifling, Benedikt | Neumann, Matthias | Hlushkou, Dzmitry | Kübel, Christian | Tallarek, Ulrich | Schmidt, Volker

    Computational Materials Science, Vol. 187 (2021), Iss. P.109934

    https://doi.org/10.1016/j.commatsci.2020.109934 [Citations: 9]
  13. Pore-size entropy of random hard-sphere packings

    Baranau, Vasili | Hlushkou, Dzmitry | Khirevich, Siarhei | Tallarek, Ulrich

    Soft Matter, Vol. 9 (2013), Iss. 12 P.3361

    https://doi.org/10.1039/c3sm27374a [Citations: 41]
  14. The quantitative impact of the mesopore size on the mass transfer mechanism of the new 1.9 μm fully porous Titan-C18 particles II – Analysis of biomolecules

    Gritti, Fabrice | Guiochon, Georges

    Journal of Chromatography A, Vol. 1392 (2015), Iss. P.10

    https://doi.org/10.1016/j.chroma.2015.02.075 [Citations: 15]
  15. Random-close packing limits for monodisperse and polydisperse hard spheres

    Baranau, Vasili | Tallarek, Ulrich

    Soft Matter, Vol. 10 (2014), Iss. 21 P.3826

    https://doi.org/10.1039/c3sm52959b [Citations: 154]
  16. The rationale for the optimum efficiency of columns packed with new 1.9μm fully porous Titan-C18 particles—A detailed investigation of the intra-particle diffusivity

    Gritti, Fabrice | Guiochon, Georges

    Journal of Chromatography A, Vol. 1355 (2014), Iss. P.164

    https://doi.org/10.1016/j.chroma.2014.05.076 [Citations: 44]
  17. Correct use of excess configurational entropies to study the ideal glass transition in hard-sphere systems with continuous polydispersity

    Baranau, Vasili | Tallarek, Ulrich

    AIP Advances, Vol. 12 (2022), Iss. 8

    https://doi.org/10.1063/5.0096421 [Citations: 1]
  18. Characterization of microscopic disorder in reconstructed porous materials and assessment of mass transport-relevant structural descriptors

    Müllner, Tibor | Unger, Klaus K. | Tallarek, Ulrich

    New J. Chem., Vol. 40 (2016), Iss. 5 P.3993

    https://doi.org/10.1039/C5NJ03346B [Citations: 53]
  19. Multiple-open-tubular column enabling transverse diffusion. Part 2: Channel size distribution and structure optimization

    Gritti, Fabrice | Hlushkou, Dzmitry | Tallarek, Ulrich

    Journal of Chromatography A, Vol. 1642 (2021), Iss. P.462033

    https://doi.org/10.1016/j.chroma.2021.462033 [Citations: 10]
  20. How Microscopic Characteristics of the Adsorption Kinetics Impact Macroscale Transport in Chromatographic Beds

    Hlushkou, Dzmitry | Gritti, Fabrice | Daneyko, Anton | Guiochon, Georges | Tallarek, Ulrich

    The Journal of Physical Chemistry C, Vol. 117 (2013), Iss. 44 P.22974

    https://doi.org/10.1021/jp408362u [Citations: 38]
  21. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media

    Icardi, Matteo | Boccardo, Gianluca | Marchisio, Daniele L. | Tosco, Tiziana | Sethi, Rajandrea

    Physical Review E, Vol. 90 (2014), Iss. 1

    https://doi.org/10.1103/PhysRevE.90.013032 [Citations: 78]
  22. Relationship between bed heterogeneity, chord length distribution, and longitudinal dispersion in particulate beds

    Svidrytski, Artur | Hlushkou, Dzmitry | Tallarek, Ulrich

    Journal of Chromatography A, Vol. 1600 (2019), Iss. P.167

    https://doi.org/10.1016/j.chroma.2019.04.044 [Citations: 5]
  23. Mass transport in porous media at the micro- and nanoscale: A novel method to model hindered diffusion

    Rusinque, Hector | Brenner, Gunther

    Microporous and Mesoporous Materials, Vol. 280 (2019), Iss. P.157

    https://doi.org/10.1016/j.micromeso.2019.01.037 [Citations: 9]
  24. Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core–shell particles with varied shell thickness and shell diffusion coefficient

    Daneyko, Anton | Hlushkou, Dzmitry | Baranau, Vasili | Khirevich, Siarhei | Seidel-Morgenstern, Andreas | Tallarek, Ulrich

    Journal of Chromatography A, Vol. 1407 (2015), Iss. P.139

    https://doi.org/10.1016/j.chroma.2015.06.047 [Citations: 52]
  25. Response to “Comments on ‘Hydrodynamic and dispersion behavior in a non-porous silica monolith through fluid dynamic study of a computational mimic reconstructed from sub-micro-tomographic scans”’

    Loh, Kai-Chee | Vasudevan, Vivek

    Journal of Chromatography A, Vol. 1302 (2013), Iss. P.208

    https://doi.org/10.1016/j.chroma.2013.05.077 [Citations: 2]
  26. Numerische Untersuchungen der hydrodynamischen Dispersion in Kugelschüttungen aus porösen Mikropartikeln

    Barthelmie, Eugenia | Sdrenka, Sebastian | Ma, Yong | Brenner, Gunther

    Chemie Ingenieur Technik, Vol. 88 (2016), Iss. 3 P.298

    https://doi.org/10.1002/cite.201500015 [Citations: 2]
  27. Longitudinal and transverse dispersion in flow through random packings of spheres: A quantitative comparison of experiments, simulations, and models

    Scheven, U. M. | Khirevich, S. | Daneyko, A. | Tallarek, U.

    Physical Review E, Vol. 89 (2014), Iss. 5

    https://doi.org/10.1103/PhysRevE.89.053023 [Citations: 19]
  28. Comparison of first and second generation analytical silica monoliths by pore-scale simulations of eddy dispersion in the bulk region

    Hlushkou, Dzmitry | Hormann, Kristof | Höltzel, Alexandra | Khirevich, Siarhei | Seidel-Morgenstern, Andreas | Tallarek, Ulrich

    Journal of Chromatography A, Vol. 1303 (2013), Iss. P.28

    https://doi.org/10.1016/j.chroma.2013.06.039 [Citations: 46]
  29. Multiple-open-tubular column enabling transverse diffusion. Part 1: Band broadening model for accurate mass transfer predictions

    Gritti, Fabrice | Hlushkou, Dzmitry | Tallarek, Ulrich

    Journal of Chromatography A, Vol. 1625 (2020), Iss. P.461325

    https://doi.org/10.1016/j.chroma.2020.461325 [Citations: 17]
  30. On the jamming phase diagram for frictionless hard-sphere packings

    Baranau, Vasili | Tallarek, Ulrich

    Soft Matter, Vol. 10 (2014), Iss. 39 P.7838

    https://doi.org/10.1039/C4SM01439A [Citations: 18]
  31. Determination of dynamic dispersion coefficient for particles flowing in a parallel-plate fracture

    Meng, Xiaoyan | Yang, Daoyong

    Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 509 (2016), Iss. P.259

    https://doi.org/10.1016/j.colsurfa.2016.08.019 [Citations: 17]
  32. Impact of diffusion on transverse dispersion in two-dimensional ordered and random porous media

    Hlushkou, Dzmitry | Piatrusha, Stanislau | Tallarek, Ulrich

    Physical Review E, Vol. 95 (2017), Iss. 6

    https://doi.org/10.1103/PhysRevE.95.063108 [Citations: 12]
  33. Chemical potential and entropy in monodisperse and polydisperse hard-sphere fluids using Widom’s particle insertion method and a pore size distribution-based insertion probability

    Baranau, Vasili | Tallarek, Ulrich

    The Journal of Chemical Physics, Vol. 144 (2016), Iss. 21

    https://doi.org/10.1063/1.4953079 [Citations: 8]
  34. Comments on “Hydrodynamic and dispersion behavior in a non-porous silica monolith through fluid dynamic study of a computational mimic reconstructed from sub-micro-tomographic scans”

    Hlushkou, Dzmitry | Höltzel, Alexandra | Tallarek, Ulrich

    Journal of Chromatography A, Vol. 1302 (2013), Iss. P.205

    https://doi.org/10.1016/j.chroma.2013.05.071 [Citations: 1]
  35. Coarse- and fine-grid numerical behavior of MRT/TRT lattice-Boltzmann schemes in regular and random sphere packings

    Khirevich, Siarhei | Ginzburg, Irina | Tallarek, Ulrich

    Journal of Computational Physics, Vol. 281 (2015), Iss. P.708

    https://doi.org/10.1016/j.jcp.2014.10.038 [Citations: 115]
  36. Geometrical and topological measures for hydrodynamic dispersion in confined sphere packings at low column-to-particle diameter ratios

    Khirevich, Siarhei | Höltzel, Alexandra | Seidel-Morgenstern, Andreas | Tallarek, Ulrich

    Journal of Chromatography A, Vol. 1262 (2012), Iss. P.77

    https://doi.org/10.1016/j.chroma.2012.08.086 [Citations: 38]
  37. Relaxation times, jamming densities, and ideal glass transition densities for hard spheres in a wide range of polydispersities

    Baranau, Vasili | Tallarek, Ulrich

    AIP Advances, Vol. 10 (2020), Iss. 3

    https://doi.org/10.1063/1.5140365 [Citations: 5]
  38. Determination of Dynamic Dispersion Coefficient for Solid Particles Flowing in a Fracture With Consideration of Gravity Effect

    Ding, Yanan | Meng, Xiaoyan | Yang, Daoyong

    Journal of Energy Resources Technology, Vol. 142 (2020), Iss. 5

    https://doi.org/10.1115/1.4045831 [Citations: 7]
  39. Multiple-open-tubular column enabling transverse diffusion. Part 3: Simulation of solute dispersion along a real three dimensional-printed column with quadratic channels

    Gritti, Fabrice | Hlushkou, Dzmitry | Tallarek, Ulrich

    Journal of Chromatography A, Vol. 1693 (2023), Iss. P.463860

    https://doi.org/10.1016/j.chroma.2023.463860 [Citations: 3]
  40. Morphologie‐Transport‐Beziehungen für partikuläre Festbetten

    Tallarek, U.

    Chemie Ingenieur Technik, Vol. 85 (2013), Iss. 9 P.1376

    https://doi.org/10.1002/cite.201250698 [Citations: 0]