Lattice Boltzmann Analysis of Fluid-Structure Interaction with Moving Boundaries

Lattice Boltzmann Analysis of Fluid-Structure Interaction with Moving Boundaries

Year:    2013

Communications in Computational Physics, Vol. 13 (2013), Iss. 3 : pp. 823–834

Abstract

This work is concerned with the modelling of the interaction of fluid flow with flexibly supported rigid bodies. The fluid flow is modelled by Lattice-Boltzmann Method, coupled to a set of ordinary differential equations describing the dynamics of the solid body in terms its elastic and damping properties. The time discretization of the body dynamics is performed via the Time Discontinuous Galerkin Method. Several numerical examples are presented and highlight the robustness and efficiency of the proposed methodology, by means of comparisons with previously published results. The examples show that the present fluid-structure method is able to capture vortex-induced oscillations of flexibly-supported rigid body.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.141111.201211s

Communications in Computational Physics, Vol. 13 (2013), Iss. 3 : pp. 823–834

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    12

Keywords:   

  1. A coupled lattice Boltzmann-finite element approach for two-dimensional fluid–structure interaction

    De Rosis, Alessandro | Falcucci, Giacomo | Ubertini, Stefano | Ubertini, Francesco

    Computers & Fluids, Vol. 86 (2013), Iss. P.558

    https://doi.org/10.1016/j.compfluid.2013.08.004 [Citations: 43]
  2. A critical assessment of PIV-based pressure reconstruction in water-entry problems

    Russo, Simonluca | Jalalisendi, Mohammad | Falcucci, Giacomo | Porfiri, Maurizio

    (2018) P.420012

    https://doi.org/10.1063/1.5044015 [Citations: 3]
  3. Lattice Boltzmann simulations of flapping wings: The flock effect and the lateral wind effect

    De Rosis, Alessandro

    International Journal of Modern Physics C, Vol. 25 (2014), Iss. 08 P.1450031

    https://doi.org/10.1142/S0129183114500314 [Citations: 1]
  4. Hydroelastic analysis of hull slamming coupling lattice Boltzmann and finite element methods

    Rosis, Alessandro De | Falcucci, Giacomo | Porfiri, Maurizio | Ubertini, Francesco | Ubertini, Stefano

    Computers & Structures, Vol. 138 (2014), Iss. P.24

    https://doi.org/10.1016/j.compstruc.2014.02.007 [Citations: 51]
  5. Numerical analysis of an oscillating square and circular bluff body submerged in the wake of an identical static bluff body: A GPU Accelerated Immersed Boundary-Lattice Boltzmann Approach

    Adeeb, Ehsan | Ha, Hojin

    Ocean Engineering, Vol. 304 (2024), Iss. P.117846

    https://doi.org/10.1016/j.oceaneng.2024.117846 [Citations: 0]
  6. Modeling fluid–structure interaction with the edge-based smoothed finite element method

    He, Tao

    Journal of Computational Physics, Vol. 460 (2022), Iss. P.111171

    https://doi.org/10.1016/j.jcp.2022.111171 [Citations: 12]
  7. Effect of spacing on a pair of naturally oscillating circular cylinders in tandem arrangements employing IB-LB methods: Crossflow-induced vibrations

    Haider, B.A. | Sohn, C.H.

    International Journal of Mechanical Sciences, Vol. 142-143 (2018), Iss. P.74

    https://doi.org/10.1016/j.ijmecsci.2018.04.032 [Citations: 21]
  8. The use of artificial compressibility to improve partitioned semi-implicit FSI coupling within the classical Chorin–Témam projection framework

    He, Tao | Wang, Tong | Zhang, Hexin

    Computers & Fluids, Vol. 166 (2018), Iss. P.64

    https://doi.org/10.1016/j.compfluid.2018.01.022 [Citations: 23]
  9. Numerical simulations of the airflows in a wine-aging room: A lattice Boltzmann-Immersed Boundary study

    De Rosis, Alessandro | Barbaresi, Alberto | Torreggiani, Daniele | Benni, Stefano | Tassinari, Patrizia

    Computers and Electronics in Agriculture, Vol. 109 (2014), Iss. P.261

    https://doi.org/10.1016/j.compag.2014.10.010 [Citations: 8]
  10. Insight into the cell-based smoothed finite element method for convection-dominated flows

    He, Tao

    Computers & Structures, Vol. 212 (2019), Iss. P.215

    https://doi.org/10.1016/j.compstruc.2018.10.021 [Citations: 31]
  11. A Comparison Between the Interpolated Bounce-Back Scheme and the Immersed Boundary Method to Treat Solid Boundary Conditions for Laminar Flows in the Lattice Boltzmann Framework

    De Rosis, Alessandro | Ubertini, Stefano | Ubertini, Francesco

    Journal of Scientific Computing, Vol. 61 (2014), Iss. 3 P.477

    https://doi.org/10.1007/s10915-014-9834-0 [Citations: 62]
  12. A lattice Boltzmann-finite element model for two-dimensional fluid–structure interaction problems involving shallow waters

    De Rosis, Alessandro

    Advances in Water Resources, Vol. 65 (2014), Iss. P.18

    https://doi.org/10.1016/j.advwatres.2014.01.003 [Citations: 17]
  13. Fluid Structure Interaction of 2D Objects through a Coupled KBC-Free Surface Model

    Chiappini, Daniele

    Water, Vol. 12 (2020), Iss. 4 P.1212

    https://doi.org/10.3390/w12041212 [Citations: 0]
  14. Computational analysis of naturally oscillating tandem square and circular bluff bodies: a GPU based immersed boundary – lattice Boltzmann approach

    Adeeb, Ehsan | Ha, Hojin

    Engineering Applications of Computational Fluid Mechanics, Vol. 16 (2022), Iss. 1 P.995

    https://doi.org/10.1080/19942060.2022.2060309 [Citations: 5]
  15. Modeling ice crystal growth using the lattice Boltzmann method

    Tan, Q. | Hosseini, S. A. | Seidel-Morgenstern, A. | Thévenin, D. | Lorenz, H.

    Physics of Fluids, Vol. 34 (2022), Iss. 1

    https://doi.org/10.1063/5.0072542 [Citations: 7]
  16. A partitioned approach for two-dimensional fluid–structure interaction problems by a coupled lattice Boltzmann-finite element method with immersed boundary

    De Rosis, Alessandro | Ubertini, Stefano | Ubertini, Francesco

    Journal of Fluids and Structures, Vol. 45 (2014), Iss. P.202

    https://doi.org/10.1016/j.jfluidstructs.2013.12.009 [Citations: 50]
  17. An interpolation-based lattice Boltzmann method for non-conforming orthogonal meshes

    Pellerin, Nicolas | Leclaire, Sébastien | Reggio, Marcelo

    Computers & Mathematics with Applications, Vol. 100 (2021), Iss. P.152

    https://doi.org/10.1016/j.camwa.2021.09.002 [Citations: 2]
  18. CBS-Based Partitioned Semi-implicit Coupling Algorithms for Fluid–Structure Interaction: A Decade Review

    He, Tao

    Archives of Computational Methods in Engineering, Vol. 31 (2024), Iss. 3 P.1721

    https://doi.org/10.1007/s11831-023-10029-8 [Citations: 0]
  19. A lattice Boltzmann model for multiphase flows interacting with deformable bodies

    De Rosis, Alessandro

    Advances in Water Resources, Vol. 73 (2014), Iss. P.55

    https://doi.org/10.1016/j.advwatres.2014.07.003 [Citations: 21]
  20. An efficient selective cell-based smoothed finite element approach to fluid-structure interaction

    He, Tao

    Physics of Fluids, Vol. 32 (2020), Iss. 6

    https://doi.org/10.1063/5.0010562 [Citations: 20]
  21. Turbulence and Interactions

    Particle-Resolved Simulations of Solid-Liquid Systems

    Derksen, Jos

    2018

    https://doi.org/10.1007/978-3-319-60387-2_1 [Citations: 0]
  22. Effect of degrees of structural freedom on the flow-induced vibrations of isolated and tandem cylindrical structures

    Haider, B.A. | Sohn, C.H.

    Ocean Engineering, Vol. 266 (2022), Iss. P.113029

    https://doi.org/10.1016/j.oceaneng.2022.113029 [Citations: 6]
  23. A moving-grid approach for fluid–structure interaction problems with hybrid lattice Boltzmann method

    Di Ilio, G. | Chiappini, D. | Ubertini, S. | Bella, G. | Succi, S.

    Computer Physics Communications, Vol. 234 (2019), Iss. P.137

    https://doi.org/10.1016/j.cpc.2018.07.017 [Citations: 21]
  24. A numerical analysis of pressure drop and particle capture efficiency by rectangular fibers using LB-DE methods

    Fan, Jianhua | Lominé, Franck | Hellou, Mustapha

    Acta Mechanica, Vol. 229 (2018), Iss. 7 P.2843

    https://doi.org/10.1007/s00707-018-2140-4 [Citations: 7]
  25. AC-CBS-Based Partitioned Semi-Implicit Coupling Algorithm for Fluid-Structure Interaction Using Stabilized Second-Order Pressure Scheme

    He, Tao | Zhang, Kai | Wang, Tong

    Communications in Computational Physics, Vol. 21 (2017), Iss. 5 P.1449

    https://doi.org/10.4208/cicp.OA-2016-0106 [Citations: 16]
  26. Ground-induced lift enhancement in a tandem of symmetric flapping wings: Lattice Boltzmann-immersed boundary simulations

    De Rosis, Alessandro

    Computers & Structures, Vol. 153 (2015), Iss. P.230

    https://doi.org/10.1016/j.compstruc.2015.02.016 [Citations: 15]
  27. Galilean invariance study on different lattice Boltzmann fluid–solid interface approaches for vortex-induced vibrations

    Haussmann, Marc | Hafen, Nicolas | Raichle, Florian | Trunk, Robin | Nirschl, Hermann | Krause, Mathias J.

    Computers & Mathematics with Applications, Vol. 80 (2020), Iss. 5 P.671

    https://doi.org/10.1016/j.camwa.2020.04.022 [Citations: 18]
  28. The Role of Very Low-Reynolds Hydrodynamics on the Transfer of Information Among Active Agents

    De Rosis, Alessandro | Ubertini, Francesco | Ubertini, Stefano | Succi, Sauro

    Journal of Statistical Physics, Vol. 161 (2015), Iss. 6 P.1390

    https://doi.org/10.1007/s10955-015-1312-z [Citations: 1]
  29. Modeling and simulation of ice–water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics

    Liu, Renwei | Yan, Jiale | Li, Shaofan

    Computational Particle Mechanics, Vol. 7 (2020), Iss. 2 P.241

    https://doi.org/10.1007/s40571-019-00268-7 [Citations: 35]
  30. Simulation of self-assemblies of colloidal particles on the substrate using a lattice Boltzmann pseudo-solid model

    Liang, Gongyou | Zeng, Zhong | Chen, Yu | Onishi, Junya | Ohashi, Hirotada | Chen, Shiyi

    Journal of Computational Physics, Vol. 248 (2013), Iss. P.323

    https://doi.org/10.1016/j.jcp.2013.04.007 [Citations: 15]
  31. Enhancement of laminar convective heat transfer using microparticle suspensions

    Zhu, Jiu Yang | Tang, Shiyang | Yi, Pyshar | Baum, Thomas | Khoshmanesh, Khashayar | Ghorbani, Kamran

    Heat and Mass Transfer, Vol. 53 (2017), Iss. 1 P.169

    https://doi.org/10.1007/s00231-016-1807-4 [Citations: 4]
  32. Lattice Boltzmann modeling of water entry problems

    Zarghami, A. | Falcucci, G. | Jannelli, E. | Succi, S. | Porfiri, M. | Ubertini, S.

    International Journal of Modern Physics C, Vol. 25 (2014), Iss. 12 P.1441012

    https://doi.org/10.1142/S0129183114410125 [Citations: 35]
  33. On the dynamics of a tandem of asynchronous flapping wings: Lattice Boltzmann-immersed boundary simulations

    De Rosis, Alessandro

    Physica A: Statistical Mechanics and its Applications, Vol. 410 (2014), Iss. P.276

    https://doi.org/10.1016/j.physa.2014.05.041 [Citations: 13]
  34. An arbitrary Lagrangian–Eulerian gradient smoothing method (GSM/ALE) for interaction of fluid and a moving rigid body

    Wang, S. | Khoo, B.C. | Liu, G.R. | Xu, G.X.

    Computers & Fluids, Vol. 71 (2013), Iss. P.327

    https://doi.org/10.1016/j.compfluid.2012.10.028 [Citations: 29]
  35. Analysis of blood flow in deformable vessels via a lattice Boltzmann approach

    De Rosis, Alessandro

    International Journal of Modern Physics C, Vol. 25 (2014), Iss. 04 P.1350107

    https://doi.org/10.1142/S0129183113501076 [Citations: 7]
  36. Aeroelastic study of flexible flapping wings by a coupled lattice Boltzmann-finite element approach with immersed boundary method

    De Rosis, Alessandro | Falcucci, Giacomo | Ubertini, Stefano | Ubertini, Francesco

    Journal of Fluids and Structures, Vol. 49 (2014), Iss. P.516

    https://doi.org/10.1016/j.jfluidstructs.2014.05.010 [Citations: 52]
  37. Numerical Investigation of the Influence of Fiber Geometry on Filtration Performance With a Coupled Lattice Boltzmann–Discrete Element Method

    Fan, Jianhua | Lominé, Franck | Hellou, Mustapha

    Journal of Applied Mechanics, Vol. 87 (2020), Iss. 1

    https://doi.org/10.1115/1.4044928 [Citations: 5]
  38. An Overview of the Combined Interface Boundary Condition Method for Fluid–Structure Interaction

    He, Tao | Zhang, Kai

    Archives of Computational Methods in Engineering, Vol. 24 (2017), Iss. 4 P.891

    https://doi.org/10.1007/s11831-016-9193-0 [Citations: 30]
  39. Harmonic oscillations of laminae in non-Newtonian fluids: A lattice Boltzmann-Immersed Boundary approach

    De Rosis, Alessandro

    Advances in Water Resources, Vol. 73 (2014), Iss. P.97

    https://doi.org/10.1016/j.advwatres.2014.07.004 [Citations: 16]