Simulation of 3D Porous Media Flows with Application to Polymer Electrolyte Fuel Cells

Simulation of 3D Porous Media Flows with Application to Polymer Electrolyte Fuel Cells

Year:    2013

Communications in Computational Physics, Vol. 13 (2013), Iss. 3 : pp. 851–866

Abstract

A 3D lattice Boltzmann (LB) model with twenty-seven discrete velocities is presented and used for the simulation of three-dimensional porous media flows. Its accuracy in combination with the half-way bounce back boundary condition is assessed. Characteristic properties of the gas diffusion layers that are used in polymer electrolyte fuel cells can be determined with this model. Simulation in samples that have been obtained via X-ray tomographic microscopy, allows to estimate the values of permeability and relative effective diffusivity. Furthermore, the computational LB results are compared with the results of other numerical tools, as well as with experimental values. 

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.341011.310112s

Communications in Computational Physics, Vol. 13 (2013), Iss. 3 : pp. 851–866

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    16

Keywords:   

  1. A microfluidic experiment and pore scale modelling diagnostics for assessing mineral precipitation and dissolution in confined spaces

    Poonoosamy, Jenna | Westerwalbesloh, Christoph | Deissmann, Guido | Mahrous, Mohamed | Curti, Enzo | Churakov, Sergey V. | Klinkenberg, Martina | Kohlheyer, Dietrich | von Lieres, Eric | Bosbach, Dirk | Prasianakis, Nikolaos I.

    Chemical Geology, Vol. 528 (2019), Iss. P.119264

    https://doi.org/10.1016/j.chemgeo.2019.07.039 [Citations: 36]
  2. A pore-level direct numerical investigation of water evaporation characteristics under air and hydrogen in the gas diffusion layers of polymer electrolyte fuel cells

    Safi, Mohammad Amin | Mantzaras, John | Prasianakis, Nikolaos I. | Lamibrac, Adrien | Büchi, Felix N.

    International Journal of Heat and Mass Transfer, Vol. 129 (2019), Iss. P.1250

    https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.042 [Citations: 20]
  3. Discrete effect on the halfway bounce-back boundary condition of multiple-relaxation-time lattice Boltzmann model for convection-diffusion equations

    Cui, Shuqi | Hong, Ning | Shi, Baochang | Chai, Zhenhua

    Physical Review E, Vol. 93 (2016), Iss. 4

    https://doi.org/10.1103/PhysRevE.93.043311 [Citations: 40]
  4. Experimental and pore-level numerical investigation of water evaporation in gas diffusion layers of polymer electrolyte fuel cells

    Safi, Mohammad Amin | Prasianakis, Nikolaos I. | Mantzaras, John | Lamibrac, Adrien | Büchi, Felix N.

    International Journal of Heat and Mass Transfer, Vol. 115 (2017), Iss. P.238

    https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.050 [Citations: 41]
  5. Micro-Scale Analysis of Liquid Water Breakthrough inside Gas Diffusion Layer for PEMFC Using X-ray Computed Tomography and Lattice Boltzmann Method

    Satjaritanun, P. | Weidner, J. W. | Hirano, S. | Lu, Z. | Khunatorn, Y. | Ogawa, S. | Litster, S. E. | Shum, A. D. | Zenyuk, I. V. | Shimpalee, S.

    Journal of The Electrochemical Society, Vol. 164 (2017), Iss. 11 P.E3359

    https://doi.org/10.1149/2.0391711jes [Citations: 67]
  6. Hydrodynamics in Porous Media: A Finite Volume Lattice Boltzmann Study

    Zarghami, Ahad | Biscarini, Chiara | Succi, Sauro | Ubertini, Stefano

    Journal of Scientific Computing, Vol. 59 (2014), Iss. 1 P.80

    https://doi.org/10.1007/s10915-013-9754-4 [Citations: 28]
  7. Lattice Boltzmann modeling and simulation of velocity and concentration slip effects on the catalytic reaction rate of strongly nonequimolar reactions in microflows

    Khatoonabadi, Meysam | Prasianakis, I. Nikolaos | Mantzaras, John

    Physical Review E, Vol. 106 (2022), Iss. 6

    https://doi.org/10.1103/PhysRevE.106.065305 [Citations: 4]
  8. Theoretical and Numerical Constant Mean Curvature Surface and Liquid Entry Pressure Calculations for a Combined Pillar–Pore Structure

    Jäger, Tobias | Keup, Jemp | Prasianakis, Nikolaos I. | Leyer, Stephan

    Coatings, Vol. 13 (2023), Iss. 5 P.865

    https://doi.org/10.3390/coatings13050865 [Citations: 1]
  9. Computational Microfluidics for Geosciences

    Soulaine, Cyprien | Maes, Julien | Roman, Sophie

    Frontiers in Water, Vol. 3 (2021), Iss.

    https://doi.org/10.3389/frwa.2021.643714 [Citations: 33]
  10. Lattice Boltzmann model with generalized wall boundary conditions for arbitrary catalytic reactivity

    Khatoonabadi, Meysam | Prasianakis, Nikolaos I. | Mantzaras, John

    Physical Review E, Vol. 103 (2021), Iss. 6

    https://doi.org/10.1103/PhysRevE.103.063303 [Citations: 5]
  11. Three-Dimensional Membrane Imaging with X-ray Ptychography: Determination of Membrane Transport Properties for Membrane Distillation

    Cramer, Kerstin | Prasianakis, Nikolaos I. | Niceno, Bojan | Ihli, Johannes | Holler, Mirko | Leyer, Stephan

    Transport in Porous Media, Vol. 138 (2021), Iss. 2 P.265

    https://doi.org/10.1007/s11242-021-01603-4 [Citations: 7]
  12. Upscaling Strategies of Porosity-Permeability Correlations in Reacting Environments from Pore-Scale Simulations

    Prasianakis, Nikolaos I. | Gatschet, Michael | Abbasi, Aida | Churakov, Sergey V.

    Geofluids, Vol. 2018 (2018), Iss. P.1

    https://doi.org/10.1155/2018/9260603 [Citations: 14]
  13. Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part I: effect of compression and anisotropy of dry GDL

    Holzer, L. | Pecho, O. | Schumacher, J. | Marmet, Ph. | Stenzel, O. | Büchi, F.N. | Lamibrac, A. | Münch, B.

    Electrochimica Acta, Vol. 227 (2017), Iss. P.419

    https://doi.org/10.1016/j.electacta.2017.01.030 [Citations: 80]
  14. Insights on the interaction of serpentine channels and gas diffusion layer in an operating polymer electrolyte fuel cell: Numerical modeling across scales

    Khatoonabadi, Meysam | Safi, Mohammad Amin | Prasianakis, Nikolaos I. | Roth, Jörg | Mantzaras, John | Kirov, Nikolay | Büchi, Felix N.

    International Journal of Heat and Mass Transfer, Vol. 181 (2021), Iss. P.121859

    https://doi.org/10.1016/j.ijheatmasstransfer.2021.121859 [Citations: 8]
  15. Bridging the gap between the Darcy-Brinkman equations and the Nielsen model for tortuosity in polymer-filled systems

    Varsakelis, C. | Papalexandris, M.V.

    Chemical Engineering Science, Vol. 213 (2020), Iss. P.115394

    https://doi.org/10.1016/j.ces.2019.115394 [Citations: 6]
  16. Pressure drop in flow across ceramic foams—A numerical and experimental study

    Regulski, W. | Szumbarski, J. | Łaniewski-Wołłk, Ł. | Gumowski, K. | Skibiński, J. | Wichrowski, M. | Wejrzanowski, T.

    Chemical Engineering Science, Vol. 137 (2015), Iss. P.320

    https://doi.org/10.1016/j.ces.2015.06.043 [Citations: 40]
  17. A pore-level 3D lattice Boltzmann simulation of mass transport and reaction in catalytic particles used for methane synthesis

    Khatoonabadi, Meysam | Prasianakis, Nikolaos I. | Mantzaras, John

    International Journal of Heat and Mass Transfer, Vol. 221 (2024), Iss. P.125025

    https://doi.org/10.1016/j.ijheatmasstransfer.2023.125025 [Citations: 3]
  18. Neural network based process coupling and parameter upscaling in reactive transport simulations

    Prasianakis, Nikolaos I. | Haller, Robin | Mahrous, Mohamed | Poonoosamy, Jenna | Pfingsten, Wilfried | Churakov, Sergey V.

    Geochimica et Cosmochimica Acta, Vol. 291 (2020), Iss. P.126

    https://doi.org/10.1016/j.gca.2020.07.019 [Citations: 41]
  19. Modelling Microbial Fuel Cells Using Lattice Boltzmann Methods

    Tsompanas, Michail-Antisthenis | Adamatzky, Andrew | Ieropoulos, Ioannis | Phillips, Neil William | Sirakoulis, Georgios Ch. | Greenman, John

    IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 16 (2019), Iss. 6 P.2035

    https://doi.org/10.1109/TCBB.2018.2831223 [Citations: 4]
  20. Discrete effects on boundary conditions of the lattice Boltzmann method for fluid flows with curved no-slip walls

    Wang, Liang | Tao, Shi | Meng, Xuhui | Zhang, Kai | Lu, Gui

    Physical Review E, Vol. 101 (2020), Iss. 6

    https://doi.org/10.1103/PhysRevE.101.063307 [Citations: 8]
  21. Pore-Level Multiphase Simulations of Realistic Distillation Membranes for Water Desalination

    Jäger, Tobias | Mokos, Athanasios | Prasianakis, Nikolaos I. | Leyer, Stephan

    Membranes, Vol. 12 (2022), Iss. 11 P.1112

    https://doi.org/10.3390/membranes12111112 [Citations: 23]
  22. Simulation of mineral dissolution at the pore scale with evolving fluid-solid interfaces: review of approaches and benchmark problem set

    Molins, Sergi | Soulaine, Cyprien | Prasianakis, Nikolaos I. | Abbasi, Aida | Poncet, Philippe | Ladd, Anthony J. C. | Starchenko, Vitalii | Roman, Sophie | Trebotich, David | Tchelepi, Hamdi A. | Steefel, Carl I.

    Computational Geosciences, Vol. 25 (2021), Iss. 4 P.1285

    https://doi.org/10.1007/s10596-019-09903-x [Citations: 84]
  23. Ionomer-involved moisture transfer and electrochemical reaction within porous catalyst layer of PEM vapor electrolyzer/dehumidifier: Numerical simulation development and parameter analysis

    Tang, Zhixian | Qi, Ronghui | Ni, Meng

    International Communications in Heat and Mass Transfer, Vol. 159 (2024), Iss. P.108276

    https://doi.org/10.1016/j.icheatmasstransfer.2024.108276 [Citations: 0]
  24. Validating the Transition Criteria from the Cassie–Baxter to the Wenzel State for Periodically Pillared Surfaces with Lattice Boltzmann Simulations

    Jäger, Tobias | Mokos, Athanasios | Prasianakis, Nikolaos I. | Leyer, Stephan

    ACS Omega, Vol. 9 (2024), Iss. 9 P.10592

    https://doi.org/10.1021/acsomega.3c08862 [Citations: 2]
  25. Petrophysical initialization of core-scale reactive transport simulations on Indiana limestones: Pore-scale characterization, spatial autocorrelations, and representative elementary volume analysis

    Mahrous, Mohamed | Curti, Enzo | Churakov, Sergey V. | Prasianakis, Nikolaos I.

    Journal of Petroleum Science and Engineering, Vol. 213 (2022), Iss. P.110389

    https://doi.org/10.1016/j.petrol.2022.110389 [Citations: 4]