Wave Propagation Across Acoustic/Biot's Media: A Finite-Difference Method

Wave Propagation Across Acoustic/Biot's Media: A Finite-Difference Method

Year:    2013

Communications in Computational Physics, Vol. 13 (2013), Iss. 4 : pp. 985–1012

Abstract

Numerical methods are developed to simulate the wave propagation in heterogeneous 2D fluid/poroelastic media. Wave propagation is described by the usual acoustics equations (in the fluid medium) and by the low-frequency Biot's equations (in the porous medium). Interface conditions are introduced to model various hydraulic contacts between the two media: open pores, sealed pores, and imperfect pores. Well-posedness of the initial-boundary value problem is proven. Cartesian grid numerical methods previously developed in porous heterogeneous media are adapted to the present context: a fourth-order ADER scheme with Strang splitting for time-marching; a space-time mesh-refinement to capture the slow compressional wave predicted by Biot's theory; and an immersed interface method to discretize the interface conditions and to introduce a subcell resolution. Numerical experiments and comparisons with exact solutions are proposed for the three types of interface conditions, demonstrating the accuracy of the approach. 

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.140911.050412a

Communications in Computational Physics, Vol. 13 (2013), Iss. 4 : pp. 985–1012

Published online:    2013-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    28

Keywords:   

  1. Wave simulation in 2D heterogeneous transversely isotropic porous media with fractional attenuation: A Cartesian grid approach

    Blanc, Emilie | Chiavassa, Guillaume | Lombard, Bruno

    Journal of Computational Physics, Vol. 275 (2014), Iss. P.118

    https://doi.org/10.1016/j.jcp.2014.07.002 [Citations: 14]
  2. Perfectly matched absorbing layer for modelling transient wave propagation in heterogeneous poroelastic media

    He, Yanbin | Chen, Tianning | Gao, Jinghuai

    Journal of Geophysics and Engineering, Vol. (2019), Iss.

    https://doi.org/10.1093/jge/gxz080 [Citations: 1]
  3. Numerical modeling of wave propagation phenomena in thermo-poroelastic media via discontinuous Galerkin methods

    Bonetti, Stefano | Botti, Michele | Mazzieri, Ilario | Antonietti, Paola F.

    Journal of Computational Physics, Vol. 489 (2023), Iss. P.112275

    https://doi.org/10.1016/j.jcp.2023.112275 [Citations: 3]
  4. Numerical and Evolutionary Optimization – NEO 2017

    Biot’s Parameters Estimation in Ultrasound Propagation Through Cancellous Bone

    Moreles, Miguel Angel | Peña, Joaquin | Neria, Jose Angel

    2019

    https://doi.org/10.1007/978-3-319-96104-0_11 [Citations: 0]
  5. Three-Dimensional Mapped-Grid Finite Volume Modeling of Poroelastic-Fluid Wave Propagation

    Lemoine, Grady I.

    SIAM Journal on Scientific Computing, Vol. 38 (2016), Iss. 5 P.B808

    https://doi.org/10.1137/130934866 [Citations: 10]
  6. Taking into Account Fluid Saturation of Bottom Sediments in Marine Seismic Survey

    Golubev, V. I. | Shevchenko, A. V. | Petrov, I. B.

    Doklady Mathematics, Vol. 100 (2019), Iss. 2 P.488

    https://doi.org/10.1134/S1064562419050107 [Citations: 10]
  7. Problem of Acoustic Diagnostics of a Damaged Zone

    Petrov, I. B. | Golubev, V. I. | Shevchenko, A. V.

    Doklady Mathematics, Vol. 101 (2020), Iss. 3 P.250

    https://doi.org/10.1134/S1064562420020180 [Citations: 5]
  8. The IBIEM solution to the scattering of P1 waves by an arbitrary shaped cavity embedded in a fluid-saturated double-porosity half-space

    Liu, Zhong-xian | Sun, Jun | Cheng, Alexander H D | Liang, Jianwen

    Geophysical Journal International, Vol. 231 (2022), Iss. 3 P.1938

    https://doi.org/10.1093/gji/ggac298 [Citations: 0]
  9. Seismic wave propagation in coupled fluid and porous media: A finite element approach

    Bucher, Federico | Zyserman, Fabio I. | Monachesi, Leonardo B.

    Geophysical Prospecting, Vol. 72 (2024), Iss. 8 P.2919

    https://doi.org/10.1111/1365-2478.13562 [Citations: 0]
  10. A High-Order Discontinuous Galerkin Method for the Poro-elasto-acoustic Problem on Polygonal and Polyhedral Grids

    Antonietti, Paola F. | Botti, Michele | Mazzieri, Ilario | Poltri, Simone Nati

    SIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 1 P.B1

    https://doi.org/10.1137/21M1410919 [Citations: 11]
  11. Seismic wave propagation in nonlinear viscoelastic media using the auxiliary differential equation method

    Martin, Roland | Bodet, Ludovic | Tournat, Vincent | Rejiba, Fayçal

    Geophysical Journal International, Vol. 216 (2019), Iss. 1 P.453

    https://doi.org/10.1093/gji/ggy441 [Citations: 8]
  12. Evanescent waves in hybrid poroelastic metamaterials with interface effects

    Zhang, Shu-Yan | Luo, Jia-Chen | Wang, Yan-Feng | Laude, Vincent | Wang, Yue-Sheng

    International Journal of Mechanical Sciences, Vol. 247 (2023), Iss. P.108154

    https://doi.org/10.1016/j.ijmecsci.2023.108154 [Citations: 4]
  13. Mixed virtual element methods for the poro-elastodynamics model on polygonal grids

    Chen, Yanli | Liu, Xin | Zhang, Wenhui | Nie, Yufeng

    Computers & Mathematics with Applications, Vol. 174 (2024), Iss. P.431

    https://doi.org/10.1016/j.camwa.2024.09.025 [Citations: 0]
  14. Semi-analytical and numerical methods for computing transient waves in 2D acoustic/poroelastic stratified media

    Lefeuve-Mesgouez, G. | Mesgouez, A. | Chiavassa, G. | Lombard, B.

    Wave Motion, Vol. 49 (2012), Iss. 7 P.667

    https://doi.org/10.1016/j.wavemoti.2012.04.006 [Citations: 19]
  15. On Mathematical and Numerical Modelling of Multiphysics Wave Propagation with Polytopal Discontinuous Galerkin Methods: a Review

    Antonietti, Paola F. | Botti, Michele | Mazzieri, Ilario

    Vietnam Journal of Mathematics, Vol. 50 (2022), Iss. 4 P.997

    https://doi.org/10.1007/s10013-022-00566-3 [Citations: 3]
  16. Numerical modeling of mechanical wave propagation

    Seriani, G. | Oliveira, S. P.

    La Rivista del Nuovo Cimento, Vol. 43 (2020), Iss. 9 P.459

    https://doi.org/10.1007/s40766-020-00009-0 [Citations: 10]
  17. A discrete representation of material heterogeneity for the finite-difference modelling of seismic wave propagation in a poroelastic medium

    Moczo, Peter | Gregor, David | Kristek, Jozef | de la Puente, Josep

    Geophysical Journal International, Vol. 216 (2019), Iss. 2 P.1072

    https://doi.org/10.1093/gji/ggy412 [Citations: 32]
  18. Unsplit perfectly matched layer absorbing boundary conditions for second-order poroelastic wave equations

    He, Yanbin | Chen, Tianning | Gao, Jinghuai

    Wave Motion, Vol. 89 (2019), Iss. P.116

    https://doi.org/10.1016/j.wavemoti.2019.01.004 [Citations: 14]
  19. Stability analysis-based reformulation of wave equations for poro-elastic media saturated with two fluids

    Xiong, Fansheng | Liu, Jiawei | Guo, Zhenwei | Liu, Jianxin

    Geophysical Journal International, Vol. 226 (2021), Iss. 1 P.327

    https://doi.org/10.1093/gji/ggab117 [Citations: 2]
  20. The effects of fracture permeability on acoustic wave propagation in the porous media: A microscopic perspective

    Wang, Ding | Wang, Liji | Ding, Pinbo

    Ultrasonics, Vol. 70 (2016), Iss. P.266

    https://doi.org/10.1016/j.ultras.2016.05.013 [Citations: 10]