Analysis of Convolution Quadrature Applied to the Time-Domain Electric Field Integral Equation

Analysis of Convolution Quadrature Applied to the Time-Domain Electric Field Integral Equation

Year:    2012

Communications in Computational Physics, Vol. 11 (2012), Iss. 2 : pp. 383–399

Abstract

We show how to apply convolution quadrature (CQ) to approximate the time domain electric field integral equation (EFIE) for electromagnetic scattering. By a suitable choice of CQ, we prove that the method is unconditionally stable and has the optimal order of convergence. Surprisingly, the resulting semi- discrete EFIE is dispersive and dissipative, and we analyze this phenomena. Finally, we present numerical results supporting and extending our convergence analysis. 

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.121209.111010s

Communications in Computational Physics, Vol. 11 (2012), Iss. 2 : pp. 383–399

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    17

Keywords:   

  1. Time-dependent electromagnetic scattering from thin layers

    Nick, Jörg | Kovács, Balázs | Lubich, Christian

    Numerische Mathematik, Vol. 150 (2022), Iss. 4 P.1123

    https://doi.org/10.1007/s00211-022-01277-0 [Citations: 3]
  2. Encyclopedia of Computational Mechanics Second Edition

    Time‐Dependent Problems with the Boundary Integral Equation Method

    Costabel, Martin | Sayas, Francisco‐Javier

    2017

    https://doi.org/10.1002/9781119176817.ecm2022 [Citations: 10]
  3. Computational Electromagnetism

    Time Domain Integral Equation Methods in Computational Electromagnetism

    Li, Jielin | Monk, Peter | Weile, Daniel

    2015

    https://doi.org/10.1007/978-3-319-19306-9_3 [Citations: 3]
  4. Time dependent electromagnetic scattering by a penetrable obstacle

    Chan, John Fun-Choi | Monk, Peter

    BIT Numerical Mathematics, Vol. 55 (2015), Iss. 1 P.5

    https://doi.org/10.1007/s10543-014-0500-6 [Citations: 4]
  5. High-order, Dispersionless “Fast-Hybrid” Wave Equation Solver. Part I: O(1) Sampling Cost via Incident-Field Windowing and Recentering

    Anderson, Thomas G. | Bruno, Oscar P. | Lyon, Mark

    SIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 2 P.A1348

    https://doi.org/10.1137/19M1251953 [Citations: 9]
  6. Time domain CFIEs for electromagnetic scattering problems

    Chen, Qiang | Monk, Peter

    Applied Numerical Mathematics, Vol. 79 (2014), Iss. P.62

    https://doi.org/10.1016/j.apnum.2013.03.005 [Citations: 1]
  7. Discretization of the Time Domain CFIE for Acoustic Scattering Problems Using Convolution Quadrature

    Chen, Qiang | Monk, Peter

    SIAM Journal on Mathematical Analysis, Vol. 46 (2014), Iss. 5 P.3107

    https://doi.org/10.1137/110833555 [Citations: 16]
  8. Mathematical aspects of variational boundary integral equations for time dependent wave propagation

    Joly, Patrick | Rodríguez, Jerónimo

    Journal of Integral Equations and Applications, Vol. 29 (2017), Iss. 1

    https://doi.org/10.1216/JIE-2017-29-1-137 [Citations: 17]
  9. Resection Strategy for the Multi-level Plane Wave Time Domain Algorithm

    Münger, Cedric | Cools, Kristof

    2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), (2023), P.316

    https://doi.org/10.1109/ICEAA57318.2023.10297839 [Citations: 0]
  10. A multi-level method for transmission eigenvalues of anisotropic media

    Ji, Xia | Sun, Jiguang

    Journal of Computational Physics, Vol. 255 (2013), Iss. P.422

    https://doi.org/10.1016/j.jcp.2013.08.030 [Citations: 20]
  11. Time-dependent electromagnetic scattering from dispersive materials

    Nick, Jörg | Burkhard, Selina | Lubich, Christian

    IMA Journal of Numerical Analysis, Vol. (2024), Iss.

    https://doi.org/10.1093/imanum/drae071 [Citations: 0]
  12. Integral Equation Methods for Evolutionary PDE

    Acoustic Scattering in the Time Domain

    Banjai, Lehel | Sayas, Francisco-Javier

    2022

    https://doi.org/10.1007/978-3-031-13220-9_4 [Citations: 0]
  13. Fast and Oblivious Algorithms for Dissipative and Two-dimensional Wave Equations

    Banjai, L. | López-Fernández, M. | Schädle, A.

    SIAM Journal on Numerical Analysis, Vol. 55 (2017), Iss. 2 P.621

    https://doi.org/10.1137/16M1070657 [Citations: 13]
  14. The time‐domain Lippmann–Schwinger equation and convolution quadrature

    Lechleiter, Armin | Monk, Peter

    Numerical Methods for Partial Differential Equations, Vol. 31 (2015), Iss. 2 P.517

    https://doi.org/10.1002/num.21921 [Citations: 7]
  15. A Galerkin method for retarded boundary integral equations with smooth and compactly supported temporal basis functions

    Sauter, S. | Veit, A.

    Numerische Mathematik, Vol. 123 (2013), Iss. 1 P.145

    https://doi.org/10.1007/s00211-012-0483-7 [Citations: 19]
  16. Large Time Step and DC Stable TD-EFIE Discretized With Implicit Runge–Kutta Methods

    Dely, Alexandre | Andriulli, Francesco P. | Cools, Kristof

    IEEE Transactions on Antennas and Propagation, Vol. 68 (2020), Iss. 2 P.976

    https://doi.org/10.1109/TAP.2019.2943443 [Citations: 11]
  17. A Fast High Order Iterative Solver for the Electromagnetic Scattering by Open Cavities Filled with the Inhomogeneous Media

    Zhao, Meiling

    Advances in Applied Mathematics and Mechanics, Vol. 5 (2013), Iss. 2 P.235

    https://doi.org/10.4208/aamm.12-m12119 [Citations: 10]
  18. An overview on a time discrete convolution—space collocation BEM for 2D exterior wave propagation problems

    Falletta, Silvia | Monegato, Giovanni | Scuderi, Letizia

    ANNALI DELL'UNIVERSITA' DI FERRARA, Vol. 68 (2022), Iss. 2 P.311

    https://doi.org/10.1007/s11565-022-00420-x [Citations: 0]
  19. Fast convolution quadrature for the wave equation in three dimensions

    Banjai, L. | Kachanovska, M.

    Journal of Computational Physics, Vol. 279 (2014), Iss. P.103

    https://doi.org/10.1016/j.jcp.2014.08.049 [Citations: 25]
  20. Overresolving in the Laplace Domain for Convolution Quadrature Methods

    Betcke, T. | Salles, N. | Śmigaj, W.

    SIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 1 P.A188

    https://doi.org/10.1137/16M106474X [Citations: 8]
  21. Stable numerical coupling of exterior and interior problems for the wave equation

    Banjai, Lehel | Lubich, Christian | Sayas, Francisco-Javier

    Numerische Mathematik, Vol. 129 (2015), Iss. 4 P.611

    https://doi.org/10.1007/s00211-014-0650-0 [Citations: 55]
  22. A Higher Order Space-Time Galerkin Scheme for Time Domain Integral Equations

    Pray, Andrew J. | Beghein, Yves | Nair, Naveen V. | Cools, Kristof | Bagci, Hakan | Shanker, B.

    IEEE Transactions on Antennas and Propagation, Vol. 62 (2014), Iss. 12 P.6183

    https://doi.org/10.1109/TAP.2014.2361156 [Citations: 17]
  23. Convolution quadrature methods for time-domain scattering from unbounded penetrable interfaces

    Labarca, Ignacio | Faria, Luiz M. | Pérez-Arancibia, Carlos

    Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 475 (2019), Iss. 2227 P.20190029

    https://doi.org/10.1098/rspa.2019.0029 [Citations: 3]