The Ultra Weak Variational Formulation Using Bessel Basis Functions

The Ultra Weak Variational Formulation Using Bessel Basis Functions

Year:    2012

Communications in Computational Physics, Vol. 11 (2012), Iss. 2 : pp. 400–414

Abstract

We investigate the ultra weak variational formulation (UWVF) of the 2-D Helmholtz equation using a new choice of basis functions. Traditionally the UWVF basis functions are chosen to be plane waves. Here, we instead use first kind Bessel functions. We compare the performance of the two bases. Moreover, we show that it is possible to use coupled plane wave and Bessel bases in the same mesh. As test cases we shall consider propagating plane and evanescent waves in a rectangular domain and a singular 2-D Helmholtz problem in an L-shaped domain.


You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.121209.040111s

Communications in Computational Physics, Vol. 11 (2012), Iss. 2 : pp. 400–414

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    15

Keywords:   

  1. High-order finite elements for the solution of Helmholtz problems

    Christodoulou, K. | Laghrouche, O. | Mohamed, M.S. | Trevelyan, J.

    Computers & Structures, Vol. 191 (2017), Iss. P.129

    https://doi.org/10.1016/j.compstruc.2017.06.010 [Citations: 36]
  2. A comparison of techniques for overcoming non‐uniqueness of boundary integral equations for the collocation partition of unity method in two‐dimensional acoustic scattering

    Diwan, G.C. | Trevelyan, J. | Coates, G.

    International Journal for Numerical Methods in Engineering, Vol. 96 (2013), Iss. 10 P.645

    https://doi.org/10.1002/nme.4583 [Citations: 10]
  3. A Solver for Helmholtz System Generated by the Discretization of Wave Shape Functions

    Yuan, Long | Hu, Qiya

    Advances in Applied Mathematics and Mechanics, Vol. 5 (2013), Iss. 06 P.791

    https://doi.org/10.4208/aamm.12-m12142 [Citations: 3]
  4. Improvements for the ultra weak variational formulation

    Luostari, T. | Huttunen, T. | Monk, P.

    International Journal for Numerical Methods in Engineering, Vol. 94 (2013), Iss. 6 P.598

    https://doi.org/10.1002/nme.4469 [Citations: 26]
  5. Performance analysis of the ultra weak variational formulation to compute electromagnetic fields on nonuniform meshes

    Gimpel, Alfred | Silva, Elson J. | Afonso, Marcio M.

    International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 31 (2018), Iss. 2

    https://doi.org/10.1002/jnm.2228 [Citations: 1]
  6. Explicit time integration with lumped mass matrix for enriched finite elements solution of time domain wave problems

    Drolia, M. | Mohamed, M.S. | Laghrouche, O. | Seaid, M. | El Kacimi, A.

    Applied Mathematical Modelling, Vol. 77 (2020), Iss. P.1273

    https://doi.org/10.1016/j.apm.2019.07.054 [Citations: 18]
  7. Mesh–Order Independence in CFD Simulation

    Xu, Xinhai | Li, Hao | Lin, Yufei

    IEEE Access, Vol. 7 (2019), Iss. P.119069

    https://doi.org/10.1109/ACCESS.2019.2937450 [Citations: 3]
  8. Amplitude-based Generalized Plane Waves: New Quasi-Trefftz Functions for Scalar Equations in two dimensions

    Imbert-Gerard, Lise-Marie

    SIAM Journal on Numerical Analysis, Vol. 59 (2021), Iss. 3 P.1663

    https://doi.org/10.1137/20M136791X [Citations: 3]
  9. Numerical solution of Rosseland model for transient thermal radiation in non-grey optically thick media using enriched basis functions

    Malek, Mustapha | Izem, Nouh | Mohamed, M. Shadi | Seaid, Mohammed | Wakrim, Mohamed

    Mathematics and Computers in Simulation, Vol. 180 (2021), Iss. P.258

    https://doi.org/10.1016/j.matcom.2020.08.024 [Citations: 11]
  10. Partition of Unity Methods

    eXtended Boundary Element Method ( XBEM ) for Fracture Mechanics and Wave Problems

    Trevelyan, Jon

    2023

    https://doi.org/10.1002/9781118535875.ch8 [Citations: 0]
  11. Singular enrichment functions for Helmholtz scattering at corner locations using the boundary element method

    Gilvey, B. | Trevelyan, J. | Hattori, G.

    International Journal for Numerical Methods in Engineering, Vol. 121 (2020), Iss. 3 P.519

    https://doi.org/10.1002/nme.6232 [Citations: 8]
  12. Implementation of an interior point source in the ultra weak variational formulation through source extraction

    Howarth, C.J. | Childs, P.N. | Moiola, A.

    Journal of Computational and Applied Mathematics, Vol. 271 (2014), Iss. P.295

    https://doi.org/10.1016/j.cam.2014.04.017 [Citations: 6]
  13. Learning dominant wave directions for plane wave methods for high-frequency Helmholtz equations

    Fang, Jun | Qian, Jianliang | Zepeda-Núñez, Leonardo | Zhao, Hongkai

    Research in the Mathematical Sciences, Vol. 4 (2017), Iss. 1

    https://doi.org/10.1186/s40687-017-0098-9 [Citations: 13]
  14. A comparison of high-order polynomial and wave-based methods for Helmholtz problems

    Lieu, Alice | Gabard, Gwénaël | Bériot, Hadrien

    Journal of Computational Physics, Vol. 321 (2016), Iss. P.105

    https://doi.org/10.1016/j.jcp.2016.05.045 [Citations: 38]
  15. Enriched finite elements for initial-value problem of transverse electromagnetic waves in time domain

    Drolia, M. | Mohamed, M.S. | Laghrouche, O. | Seaid, M. | Trevelyan, J.

    Computers & Structures, Vol. 182 (2017), Iss. P.354

    https://doi.org/10.1016/j.compstruc.2016.11.011 [Citations: 11]
  16. A roadmap for Generalized Plane Waves and their interpolation properties

    Imbert-Gérard, Lise-Marie | Sylvand, Guillaume

    Numerische Mathematik, Vol. 149 (2021), Iss. 1 P.87

    https://doi.org/10.1007/s00211-021-01220-9 [Citations: 1]
  17. The ultra weak variational formulation of thin clamped plate problems

    Luostari, Teemu | Huttunen, Tomi | Monk, Peter

    Journal of Computational Physics, Vol. 260 (2014), Iss. P.85

    https://doi.org/10.1016/j.jcp.2013.12.028 [Citations: 5]