Year: 2012
Communications in Computational Physics, Vol. 11 (2012), Iss. 3 : pp. 797–830
Abstract
A detailed comparison of continuum and valence force field strain calculations in quantum-dot structures is presented with particular emphasis to boundary conditions, their implementation in the finite-element method, and associated implications for electronic states. The first part of this work provides the equation framework for the elastic continuum model including piezoelectric effects in crystal structures as well as detailing the Keating model equations used in the atomistic valence force field calculations. Given the variety of possible structure shapes, a choice of pyramidal, spherical and cubic-dot shapes is made having in mind their pronounced shape differences and practical relevance. In this part boundary conditions are also considered; in particular the relevance of imposing different types of boundary conditions is highlighted and discussed. In the final part, quantum dots with inhomogeneous indium concentration profiles are studied in order to highlight the importance of taking into account the exact In concentration profile for real quantum dots. The influence of strain, electric-field distributions, and material inhomogeneity of spherical quantum dots on electronic wavefunctions is briefly discussed.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.111110.110411a
Communications in Computational Physics, Vol. 11 (2012), Iss. 3 : pp. 797–830
Published online: 2012-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 34
-
Electromechanical field effects in InAs/GaAs quantum dots based on continuum k→·p→ and atomistic tight-binding methods
Barettin, Daniele | Pecchia, Alessandro | Auf der Maur, Matthias | Di Carlo, Aldo | Lassen, Benny | Willatzen, MortenComputational Materials Science, Vol. 197 (2021), Iss. P.110678
https://doi.org/10.1016/j.commatsci.2021.110678 [Citations: 12] -
Optoelectronics of inverted type-I CdS/CdSe core/crown quantum ring
Bose, Sumanta | Fan, Weijun | Zhang, Dao HuaJournal of Applied Physics, Vol. 122 (2017), Iss. 16
https://doi.org/10.1063/1.4986638 [Citations: 0] -
Physics of Quantum Rings
Differential Geometry Applied to Rings and Möbius Nanostructures
Lassen, Benny | Willatzen, Morten | Gravesen, Jens2018
https://doi.org/10.1007/978-3-319-95159-1_16 [Citations: 0] -
Impact of Local Composition on the Emission Spectra of InGaN Quantum-Dot LEDs
Barettin, Daniele | Sakharov, Alexei V. | Tsatsulnikov, Andrey F. | Nikolaev, Andrey E. | Pecchia, Alessandro | Auf der Maur, Matthias | Karpov, Sergey Yu. | Cherkashin, NikolayNanomaterials, Vol. 13 (2023), Iss. 8 P.1367
https://doi.org/10.3390/nano13081367 [Citations: 3] -
Direct Band Gap AlGaAs Wurtzite Nanowires
Barettin, Daniele | Shtrom, Igor V. | Reznik, Rodion R. | Mikushev, Sergey V. | Cirlin, George E. | Auf der Maur, Matthias | Akopian, NikaNano Letters, Vol. 23 (2023), Iss. 3 P.895
https://doi.org/10.1021/acs.nanolett.2c04184 [Citations: 5] -
Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range
Huffaker, Diana L. | Szmulowicz, Frank | Eisele, Holger | Semenova, E. S. | Kulkova, I. V. | Kadkhodazadeh, S. | Barettin, D. | Kopylov, O. | Cagliani, A. | Almdal, K. | Willatzen, M. | Yvind, K.Quantum Dots and Nanostructures: Synthesis, Characterization, and Modeling XI, (2014), P.899606
https://doi.org/10.1117/12.2039567 [Citations: 5] -
Excitonic lasing of strain-free InP(As) quantum dots in AlInAs microdisk
Lebedev, D. V. | Kulagina, M. M. | Troshkov, S. I. | Vlasov, A. S. | Davydov, V. Y. | Smirnov, A. N. | Bogdanov, A. A. | Merz, J. L. | Kapaldo, J. | Gocalinska, A. | Juska, G. | Moroni, S. T. | Pelucchi, E. | Barettin, D. | Rouvimov, S. | Mintairov, A. M.Applied Physics Letters, Vol. 110 (2017), Iss. 12
https://doi.org/10.1063/1.4979029 [Citations: 3] -
Theory of piezotronics and piezo-phototronics
Zhang, Yan | Leng, Yongsheng | Willatzen, Morten | Huang, BolongMRS Bulletin, Vol. 43 (2018), Iss. 12 P.928
https://doi.org/10.1557/mrs.2018.297 [Citations: 70] -
State of the Art of Continuous and Atomistic Modeling of Electromechanical Properties of Semiconductor Quantum Dots
Barettin, Daniele
Nanomaterials, Vol. 13 (2023), Iss. 12 P.1820
https://doi.org/10.3390/nano13121820 [Citations: 2] -
Carrier transport and emission efficiency in InGaN quantum-dot based light-emitting diodes
Barettin, Daniele | Auf der Maur, Matthias | di Carlo, Aldo | Pecchia, Alessandro | Tsatsulnikov, Andrei F | Lundin, Wsevolod V | Sakharov, Alexei V | Nikolaev, Andrei E | Korytov, Maxim | Cherkashin, Nikolay | Hÿtch, Martin J | Karpov, Sergey YuNanotechnology, Vol. 28 (2017), Iss. 27 P.275201
https://doi.org/10.1088/1361-6528/aa75a8 [Citations: 15] -
Model of a GaAs Quantum Dot Embedded in a Polymorph AlGaAs Nanowire
Barettin, D. | Platonov, A. V. | Pecchia, A. | Kats, V. N. | Cirlin, G. E. | Soshnikov, I. P. | Bouravleuv, A. D. | Besombes, L. | Mariette, H. | Auf der Maur, Matthias | Carlo, A. D.IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19 (2013), Iss. 5 P.1
https://doi.org/10.1109/JSTQE.2013.2240657 [Citations: 15] -
Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules
Barettin, Daniele | Auf der Maur, Matthias | De Angelis, Roberta | Prosposito, Paolo | Casalboni, Mauro | Pecchia, AlessandroJournal of Applied Physics, Vol. 117 (2015), Iss. 9
https://doi.org/10.1063/1.4914041 [Citations: 12] -
Realistic model of LED structure with InGaN quantum-dots active region
Barettin, Daniele | Auf der Maur, Matthias | Pecchia, Alessandro | Rodrigues, Walter | Tsatsulnikov, Andrei F. | Sakharov, Alexei V. | Lundin, Wsevolod V. | Nikolaev, A. E. | Cherkashin, Nikolay | Hytch, Martin J. | Karpov, Sergey Yu. | di Carlo, Aldo2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), (2015), P.1543
https://doi.org/10.1109/NANO.2015.7388939 [Citations: 0] -
Electromechanically Coupled III-N Quantum Dots
Barettin, Daniele | Sakharov, Alexei V. | Tsatsulnikov, Andrey F. | Nikolaev, Andrey E. | Cherkashin, NikolayNanomaterials, Vol. 13 (2023), Iss. 2 P.241
https://doi.org/10.3390/nano13020241 [Citations: 1] -
Atomistic approach to the strain field in finite-sized heterostructures
Cheche, Tiberius O.
Computer Physics Communications, Vol. 292 (2023), Iss. P.108867
https://doi.org/10.1016/j.cpc.2023.108867 [Citations: 0] -
A valence force field-Monte Carlo algorithm for quantum dot growth modeling
Barettin, Daniele | Willatzen, Morten | Kadkhodazadeh, Shima | Pecchia, Alessandro | Auf der Maur, Matthias | Semenova, E. S.2017 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), (2017), P.117
https://doi.org/10.1109/NUSOD.2017.8010019 [Citations: 0] -
Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results
Barettin, Daniele | De Angelis, Roberta | Prosposito, Paolo | Auf der Maur, Matthias | Casalboni, Mauro | Pecchia, AlessandroNanotechnology, Vol. 25 (2014), Iss. 19 P.195201
https://doi.org/10.1088/0957-4484/25/19/195201 [Citations: 25] -
Piezoelectric tunability and topological insulator transition in a GaN/InN/GaN quantum-well device
Barettin, Daniele | Auf der Maur, Matthias | Pecchia, Alessandro | Zhang, Yan | Willatzen, Morten | Lin Wang, ZhongJournal of Physics: Materials, Vol. 4 (2021), Iss. 3 P.034008
https://doi.org/10.1088/2515-7639/abf7dc [Citations: 1] -
Modelling of GaAs quantum dot embedded in a polymorph AlGaAs nano wire
Barettin, Daniele | Platonov, Alexei V. | Pecchia, Alessandro | Kats, Vladimir N. | Cirlin, George E. | Soshnikov, Iliya P. | Bouravleuv, Alexei D. | Besombes, Lucien | Mariette, Henri | der Maur, Matthias Auf | di Carlo, Aldo2013 13th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), (2013), P.139
https://doi.org/10.1109/NUSOD.2013.6633163 [Citations: 0] -
Optimization of InGaN quantum-dot based light-emitting diodes by means of cellular automata algorithms
Teodorani, Maria Cristina | Barettin, DanieleOptical and Quantum Electronics, Vol. 54 (2022), Iss. 7
https://doi.org/10.1007/s11082-022-03807-4 [Citations: 1] -
Strain analysis for the prediction of the preferential nucleation sites of stacked quantum dots by combination of FEM and APT
Hernández-Saz, Jesús | Herrera, Miriam | Duguay, Sébastien | Molina, Sergio INanoscale Research Letters, Vol. 8 (2013), Iss. 1
https://doi.org/10.1186/1556-276X-8-513 [Citations: 3] -
Strain in inhomogeneous InAs/GaAs quantum dot structures
Lassen, B | Barettin, D | Willatzen, MJournal of Physics: Conference Series, Vol. 367 (2012), Iss. P.012007
https://doi.org/10.1088/1742-6596/367/1/012007 [Citations: 8] -
Fabry-Perot Pressure Sensors Based on Polycrystalline Diamond Membranes
Pettinato, Sara | Barettin, Daniele | Sedov, Vadim | Ralchenko, Victor | Salvatori, StefanoMaterials, Vol. 14 (2021), Iss. 7 P.1780
https://doi.org/10.3390/ma14071780 [Citations: 12] -
Effects of spontaneous and piezoelectric polarization fields on the electronic and optical properties in GaN/AlN quantum dots: multimillion-atomsp3d5s*tight-binding simulations
Sundaresan, Sasi S. | Gaddipati, Vamsi M. | Ahmed, Shaikh S.International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 28 (2015), Iss. 3 P.321
https://doi.org/10.1002/jnm.2008 [Citations: 13] -
Electronic Structure of Polar and Semipolar (112¯2)-Oriented Nitride Dot-in-a-Well Systems
Schulz, S. | Marquardt, O.Physical Review Applied, Vol. 3 (2015), Iss. 6
https://doi.org/10.1103/PhysRevApplied.3.064020 [Citations: 12] -
Realistic models of quantum-dot heterostructures
Barettin, Daniele | Auf der Maur, Matthias | Pecchia, Alessandro | di Carlo, AldoNumerical Simulation of Optoelectronic Devices, 2014, (2014), P.3
https://doi.org/10.1109/NUSOD.2014.6935327 [Citations: 0] -
Model of a GaAs Quantum Dot in a Direct Band Gap AlGaAs Wurtzite Nanowire
Barettin, Daniele | Shtrom, Igor V. | Reznik, Rodion R. | Cirlin, George E.Nanomaterials, Vol. 13 (2023), Iss. 11 P.1737
https://doi.org/10.3390/nano13111737 [Citations: 0] -
Mechanically Bent Graphene as an Effective Piezoelectric Nanogenerator
Duggen, L. | Willatzen, M. | Wang, Z. L.The Journal of Physical Chemistry C, Vol. 122 (2018), Iss. 36 P.20581
https://doi.org/10.1021/acs.jpcc.8b05246 [Citations: 16] -
Strain and piezoelectric control of electronic and photonic properties of p − n diodes
Barettin, Daniele | Willatzen, MortenJournal of Physics D: Applied Physics, Vol. 57 (2024), Iss. 35 P.355104
https://doi.org/10.1088/1361-6463/ad4f98 [Citations: 0]