Computational Methods for Electromechanical Fields in Self-Assembled Quantum Dots

Computational Methods for Electromechanical Fields in Self-Assembled Quantum Dots

Year:    2012

Communications in Computational Physics, Vol. 11 (2012), Iss. 3 : pp. 797–830

Abstract

A detailed comparison of continuum and valence force field strain calculations in quantum-dot structures is presented with particular emphasis to boundary conditions, their implementation in the finite-element method, and associated implications for electronic states. The first part of this work provides the equation framework for the elastic continuum model including piezoelectric effects in crystal structures as well as detailing the Keating model equations used in the atomistic valence force field calculations. Given the variety of possible structure shapes, a choice of pyramidal, spherical and cubic-dot shapes is made having in mind their pronounced shape differences and practical relevance. In this part boundary conditions are also considered; in particular the relevance of imposing different types of boundary conditions is highlighted and discussed. In the final part, quantum dots with inhomogeneous indium concentration profiles are studied in order to highlight the importance of taking into account the exact In concentration profile for real quantum dots. The influence of strain, electric-field distributions, and material inhomogeneity of spherical quantum dots on electronic wavefunctions is briefly discussed.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.111110.110411a

Communications in Computational Physics, Vol. 11 (2012), Iss. 3 : pp. 797–830

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    34

Keywords:   

  1. Electromechanical field effects in InAs/GaAs quantum dots based on continuum k→·p→ and atomistic tight-binding methods

    Barettin, Daniele | Pecchia, Alessandro | Auf der Maur, Matthias | Di Carlo, Aldo | Lassen, Benny | Willatzen, Morten

    Computational Materials Science, Vol. 197 (2021), Iss. P.110678

    https://doi.org/10.1016/j.commatsci.2021.110678 [Citations: 12]
  2. Optoelectronics of inverted type-I CdS/CdSe core/crown quantum ring

    Bose, Sumanta | Fan, Weijun | Zhang, Dao Hua

    Journal of Applied Physics, Vol. 122 (2017), Iss. 16

    https://doi.org/10.1063/1.4986638 [Citations: 0]
  3. Physics of Quantum Rings

    Differential Geometry Applied to Rings and Möbius Nanostructures

    Lassen, Benny | Willatzen, Morten | Gravesen, Jens

    2018

    https://doi.org/10.1007/978-3-319-95159-1_16 [Citations: 0]
  4. Impact of Local Composition on the Emission Spectra of InGaN Quantum-Dot LEDs

    Barettin, Daniele | Sakharov, Alexei V. | Tsatsulnikov, Andrey F. | Nikolaev, Andrey E. | Pecchia, Alessandro | Auf der Maur, Matthias | Karpov, Sergey Yu. | Cherkashin, Nikolay

    Nanomaterials, Vol. 13 (2023), Iss. 8 P.1367

    https://doi.org/10.3390/nano13081367 [Citations: 3]
  5. Direct Band Gap AlGaAs Wurtzite Nanowires

    Barettin, Daniele | Shtrom, Igor V. | Reznik, Rodion R. | Mikushev, Sergey V. | Cirlin, George E. | Auf der Maur, Matthias | Akopian, Nika

    Nano Letters, Vol. 23 (2023), Iss. 3 P.895

    https://doi.org/10.1021/acs.nanolett.2c04184 [Citations: 5]
  6. Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range

    Huffaker, Diana L. | Szmulowicz, Frank | Eisele, Holger | Semenova, E. S. | Kulkova, I. V. | Kadkhodazadeh, S. | Barettin, D. | Kopylov, O. | Cagliani, A. | Almdal, K. | Willatzen, M. | Yvind, K.

    Quantum Dots and Nanostructures: Synthesis, Characterization, and Modeling XI, (2014), P.899606

    https://doi.org/10.1117/12.2039567 [Citations: 5]
  7. Excitonic lasing of strain-free InP(As) quantum dots in AlInAs microdisk

    Lebedev, D. V. | Kulagina, M. M. | Troshkov, S. I. | Vlasov, A. S. | Davydov, V. Y. | Smirnov, A. N. | Bogdanov, A. A. | Merz, J. L. | Kapaldo, J. | Gocalinska, A. | Juska, G. | Moroni, S. T. | Pelucchi, E. | Barettin, D. | Rouvimov, S. | Mintairov, A. M.

    Applied Physics Letters, Vol. 110 (2017), Iss. 12

    https://doi.org/10.1063/1.4979029 [Citations: 3]
  8. Theory of piezotronics and piezo-phototronics

    Zhang, Yan | Leng, Yongsheng | Willatzen, Morten | Huang, Bolong

    MRS Bulletin, Vol. 43 (2018), Iss. 12 P.928

    https://doi.org/10.1557/mrs.2018.297 [Citations: 70]
  9. State of the Art of Continuous and Atomistic Modeling of Electromechanical Properties of Semiconductor Quantum Dots

    Barettin, Daniele

    Nanomaterials, Vol. 13 (2023), Iss. 12 P.1820

    https://doi.org/10.3390/nano13121820 [Citations: 2]
  10. Carrier transport and emission efficiency in InGaN quantum-dot based light-emitting diodes

    Barettin, Daniele | Auf der Maur, Matthias | di Carlo, Aldo | Pecchia, Alessandro | Tsatsulnikov, Andrei F | Lundin, Wsevolod V | Sakharov, Alexei V | Nikolaev, Andrei E | Korytov, Maxim | Cherkashin, Nikolay | Hÿtch, Martin J | Karpov, Sergey Yu

    Nanotechnology, Vol. 28 (2017), Iss. 27 P.275201

    https://doi.org/10.1088/1361-6528/aa75a8 [Citations: 15]
  11. Model of a GaAs Quantum Dot Embedded in a Polymorph AlGaAs Nanowire

    Barettin, D. | Platonov, A. V. | Pecchia, A. | Kats, V. N. | Cirlin, G. E. | Soshnikov, I. P. | Bouravleuv, A. D. | Besombes, L. | Mariette, H. | Auf der Maur, Matthias | Carlo, A. D.

    IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19 (2013), Iss. 5 P.1

    https://doi.org/10.1109/JSTQE.2013.2240657 [Citations: 15]
  12. Inter-dot strain field effect on the optoelectronic properties of realistic InP lateral quantum-dot molecules

    Barettin, Daniele | Auf der Maur, Matthias | De Angelis, Roberta | Prosposito, Paolo | Casalboni, Mauro | Pecchia, Alessandro

    Journal of Applied Physics, Vol. 117 (2015), Iss. 9

    https://doi.org/10.1063/1.4914041 [Citations: 12]
  13. Realistic model of LED structure with InGaN quantum-dots active region

    Barettin, Daniele | Auf der Maur, Matthias | Pecchia, Alessandro | Rodrigues, Walter | Tsatsulnikov, Andrei F. | Sakharov, Alexei V. | Lundin, Wsevolod V. | Nikolaev, A. E. | Cherkashin, Nikolay | Hytch, Martin J. | Karpov, Sergey Yu. | di Carlo, Aldo

    2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), (2015), P.1543

    https://doi.org/10.1109/NANO.2015.7388939 [Citations: 0]
  14. Electromechanically Coupled III-N Quantum Dots

    Barettin, Daniele | Sakharov, Alexei V. | Tsatsulnikov, Andrey F. | Nikolaev, Andrey E. | Cherkashin, Nikolay

    Nanomaterials, Vol. 13 (2023), Iss. 2 P.241

    https://doi.org/10.3390/nano13020241 [Citations: 1]
  15. Atomistic approach to the strain field in finite-sized heterostructures

    Cheche, Tiberius O.

    Computer Physics Communications, Vol. 292 (2023), Iss. P.108867

    https://doi.org/10.1016/j.cpc.2023.108867 [Citations: 0]
  16. A valence force field-Monte Carlo algorithm for quantum dot growth modeling

    Barettin, Daniele | Willatzen, Morten | Kadkhodazadeh, Shima | Pecchia, Alessandro | Auf der Maur, Matthias | Semenova, E. S.

    2017 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), (2017), P.117

    https://doi.org/10.1109/NUSOD.2017.8010019 [Citations: 0]
  17. Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results

    Barettin, Daniele | De Angelis, Roberta | Prosposito, Paolo | Auf der Maur, Matthias | Casalboni, Mauro | Pecchia, Alessandro

    Nanotechnology, Vol. 25 (2014), Iss. 19 P.195201

    https://doi.org/10.1088/0957-4484/25/19/195201 [Citations: 25]
  18. Piezoelectric tunability and topological insulator transition in a GaN/InN/GaN quantum-well device

    Barettin, Daniele | Auf der Maur, Matthias | Pecchia, Alessandro | Zhang, Yan | Willatzen, Morten | Lin Wang, Zhong

    Journal of Physics: Materials, Vol. 4 (2021), Iss. 3 P.034008

    https://doi.org/10.1088/2515-7639/abf7dc [Citations: 1]
  19. Modelling of GaAs quantum dot embedded in a polymorph AlGaAs nano wire

    Barettin, Daniele | Platonov, Alexei V. | Pecchia, Alessandro | Kats, Vladimir N. | Cirlin, George E. | Soshnikov, Iliya P. | Bouravleuv, Alexei D. | Besombes, Lucien | Mariette, Henri | der Maur, Matthias Auf | di Carlo, Aldo

    2013 13th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), (2013), P.139

    https://doi.org/10.1109/NUSOD.2013.6633163 [Citations: 0]
  20. Optimization of InGaN quantum-dot based light-emitting diodes by means of cellular automata algorithms

    Teodorani, Maria Cristina | Barettin, Daniele

    Optical and Quantum Electronics, Vol. 54 (2022), Iss. 7

    https://doi.org/10.1007/s11082-022-03807-4 [Citations: 1]
  21. Strain analysis for the prediction of the preferential nucleation sites of stacked quantum dots by combination of FEM and APT

    Hernández-Saz, Jesús | Herrera, Miriam | Duguay, Sébastien | Molina, Sergio I

    Nanoscale Research Letters, Vol. 8 (2013), Iss. 1

    https://doi.org/10.1186/1556-276X-8-513 [Citations: 3]
  22. Strain in inhomogeneous InAs/GaAs quantum dot structures

    Lassen, B | Barettin, D | Willatzen, M

    Journal of Physics: Conference Series, Vol. 367 (2012), Iss. P.012007

    https://doi.org/10.1088/1742-6596/367/1/012007 [Citations: 8]
  23. Fabry-Perot Pressure Sensors Based on Polycrystalline Diamond Membranes

    Pettinato, Sara | Barettin, Daniele | Sedov, Vadim | Ralchenko, Victor | Salvatori, Stefano

    Materials, Vol. 14 (2021), Iss. 7 P.1780

    https://doi.org/10.3390/ma14071780 [Citations: 12]
  24. Effects of spontaneous and piezoelectric polarization fields on the electronic and optical properties in GaN/AlN quantum dots: multimillion-atomsp3d5s*tight-binding simulations

    Sundaresan, Sasi S. | Gaddipati, Vamsi M. | Ahmed, Shaikh S.

    International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 28 (2015), Iss. 3 P.321

    https://doi.org/10.1002/jnm.2008 [Citations: 13]
  25. Electronic Structure of Polar and Semipolar (112¯2)-Oriented Nitride Dot-in-a-Well Systems

    Schulz, S. | Marquardt, O.

    Physical Review Applied, Vol. 3 (2015), Iss. 6

    https://doi.org/10.1103/PhysRevApplied.3.064020 [Citations: 12]
  26. Realistic models of quantum-dot heterostructures

    Barettin, Daniele | Auf der Maur, Matthias | Pecchia, Alessandro | di Carlo, Aldo

    Numerical Simulation of Optoelectronic Devices, 2014, (2014), P.3

    https://doi.org/10.1109/NUSOD.2014.6935327 [Citations: 0]
  27. Model of a GaAs Quantum Dot in a Direct Band Gap AlGaAs Wurtzite Nanowire

    Barettin, Daniele | Shtrom, Igor V. | Reznik, Rodion R. | Cirlin, George E.

    Nanomaterials, Vol. 13 (2023), Iss. 11 P.1737

    https://doi.org/10.3390/nano13111737 [Citations: 0]
  28. Mechanically Bent Graphene as an Effective Piezoelectric Nanogenerator

    Duggen, L. | Willatzen, M. | Wang, Z. L.

    The Journal of Physical Chemistry C, Vol. 122 (2018), Iss. 36 P.20581

    https://doi.org/10.1021/acs.jpcc.8b05246 [Citations: 16]
  29. Strain and piezoelectric control of electronic and photonic properties of p − n diodes

    Barettin, Daniele | Willatzen, Morten

    Journal of Physics D: Applied Physics, Vol. 57 (2024), Iss. 35 P.355104

    https://doi.org/10.1088/1361-6463/ad4f98 [Citations: 0]