Oblique Drop Impact on Deep and Shallow Liquid

Oblique Drop Impact on Deep and Shallow Liquid

Year:    2012

Communications in Computational Physics, Vol. 11 (2012), Iss. 4 : pp. 1386–1396

Abstract

Numerical simulations using CLSVOF (coupled level set and volume of fluid) method are performed to investigate the coalescence and splashing regimes when a spherical water drop hits on the water surface with an impingement angle. Impingement angle is the angle between the velocity vector of primary drop and the normal vector to water surface. The effect of impingement angle, impact velocity and the height of target liquid are carried out. The impingement angle is varied from 0o to 90o showing the gradual change in phenomena. The formation of ship pro like shape, liquid sheet, secondary drops and crater are seen. Crater height, crater displacement, crown height and crown angle are calculated and the change in the parameters with change in impingement angle is noted. 

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.140510.150511s

Communications in Computational Physics, Vol. 11 (2012), Iss. 4 : pp. 1386–1396

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    11

Keywords:   

  1. Experimental Study of Drop Impact on Deep-Water Surface in the Presence of Wind

    Liu, Xinan

    Journal of Physical Oceanography, Vol. 48 (2018), Iss. 2 P.329

    https://doi.org/10.1175/JPO-D-17-0172.1 [Citations: 13]
  2. Waves and bubbles of drop impact

    Ilinykh, A. Yu.

    Известия Российской академии наук. Серия физическая, Vol. 87 (2023), Iss. 1 P.99

    https://doi.org/10.31857/S0367676522700181 [Citations: 0]
  3. Crown morphology of oblique drop impact on a curved liquid film

    Chen, Weihao | Guo, Yali | Chi, Jun | Shen, Shengqiang

    Physics of Fluids, Vol. 35 (2023), Iss. 12

    https://doi.org/10.1063/5.0176372 [Citations: 3]
  4. Oblique impact of droplet on a moving film in spray cooling

    Wu, Yanzhen | Kong, Bo | Tong, Baohong | Xiao, Yiting | Zhang, Guotao | Hu, Xiaolei

    European Journal of Mechanics - B/Fluids, Vol. 100 (2023), Iss. P.21

    https://doi.org/10.1016/j.euromechflu.2023.02.002 [Citations: 5]
  5. Effects of wind on the dynamics of the central jet during drop impact onto a deep-water surface

    Liu, Xinan | Wang, An | Wang, Shuang | Dai, Dejun

    Physical Review Fluids, Vol. 3 (2018), Iss. 5

    https://doi.org/10.1103/PhysRevFluids.3.053602 [Citations: 9]
  6. Single-drop impingement onto a wavy liquid film and description of the asymmetrical cavity dynamics

    van Hinsberg, Nils Paul | Charbonneau-Grandmaison, Marie

    Physical Review E, Vol. 92 (2015), Iss. 1

    https://doi.org/10.1103/PhysRevE.92.013004 [Citations: 10]
  7. Probing the influence of superhydrophobicity and mixed wettability on droplet displacement behavior

    Randive, Pitambar | Dalal, Amaresh | Mukherjee, Partha P.

    Microfluidics and Nanofluidics, Vol. 17 (2014), Iss. 4 P.657

    https://doi.org/10.1007/s10404-014-1350-x [Citations: 17]
  8. Wettability effects on contact line dynamics of droplet motion in an inclined channel

    Randive, Pitambar | Dalal, Amaresh | Sahu, Kirti Chandra | Biswas, Gautam | Mukherjee, Partha P.

    Physical Review E, Vol. 91 (2015), Iss. 5

    https://doi.org/10.1103/PhysRevE.91.053006 [Citations: 22]
  9. Coalescence and migration of a droplet on a liquid pool with an inclined bottom wall

    Kirar, Pavan Kumar | Kolhe, Pankaj S. | Sahu, Kirti Chandra

    Physical Review Fluids, Vol. 7 (2022), Iss. 9

    https://doi.org/10.1103/PhysRevFluids.7.094001 [Citations: 7]
  10. Numerical Simulation of Single Droplet Impingement upon Dynamic Liquid Film Obliquely

    Yang, Shanshan | Zeng, Quanyuan | Zhang, Xiaohua | Dong, Chunzhu | Guan, Ling

    Mathematics, Vol. 10 (2022), Iss. 17 P.3193

    https://doi.org/10.3390/math10173193 [Citations: 4]
  11. Electric-Discharge-Mediated Jetting, Crowning, Bursting, and Atomization of a Droplet

    Sarma, Bhaskarjyoti | Kumar, Sunny | Dalal, Amaresh | Basu, Dipankar N. | Bandyopadhyay, Dipankar

    Physical Review Applied, Vol. 15 (2021), Iss. 1

    https://doi.org/10.1103/PhysRevApplied.15.014005 [Citations: 3]
  12. Splashing dynamics of a drop impact onto a deep liquid pool with moving film interface

    Gupta, Garvit | Kumar, Parmod

    Physics of Fluids, Vol. 32 (2020), Iss. 1

    https://doi.org/10.1063/1.5131637 [Citations: 19]
  13. Post impact droplet hydrodynamics on inclined planes of variant wettabilities

    Sahoo, Nilamani | Khurana, Gargi | Harikrishnan, A.R. | Samanta, Devranjan | Dhar, Purbarun

    European Journal of Mechanics - B/Fluids, Vol. 79 (2020), Iss. P.27

    https://doi.org/10.1016/j.euromechflu.2019.08.013 [Citations: 40]
  14. Numerical analysis of droplet impact and heat transfer on an inclined wet surface

    Li, Dashu | Duan, Xili

    International Journal of Heat and Mass Transfer, Vol. 128 (2019), Iss. P.459

    https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.025 [Citations: 21]
  15. Numerical Simulation of Single Droplet Impingement Upon Dynamic Liquid Film Obliquely

    Yang, Shanshan | Zeng, Quanyuan | Zhang, Xiaohua

    SSRN Electronic Journal , Vol. (2022), Iss.

    https://doi.org/10.2139/ssrn.4142352 [Citations: 0]
  16. Coalescence of non-spherical drops with a liquid surface

    Anirudh, Nagula Venkata | Behera, Sachidananda | Sahu, Kirti Chandra

    International Journal of Multiphase Flow, Vol. 175 (2024), Iss. P.104800

    https://doi.org/10.1016/j.ijmultiphaseflow.2024.104800 [Citations: 2]
  17. Machine learning-aided investigation of immiscible droplet impact on liquid pools across varying depths and droplet viscosities

    Shahdhaar, Mohammad Autif | Srivastava, Arpan | Srivastava, Atul

    Experiments in Fluids, Vol. 65 (2024), Iss. 3

    https://doi.org/10.1007/s00348-024-03769-1 [Citations: 0]
  18. Oblique drop impact onto a deep liquid pool

    Gielen, Marise V. | Sleutel, Pascal | Benschop, Jos | Riepen, Michel | Voronina, Victoria | Visser, Claas Willem | Lohse, Detlef | Snoeijer, Jacco H. | Versluis, Michel | Gelderblom, Hanneke

    Physical Review Fluids, Vol. 2 (2017), Iss. 8

    https://doi.org/10.1103/PhysRevFluids.2.083602 [Citations: 40]
  19. Waves and Bubbles of Drop Impact

    Ilinykh, A. Yu.

    Bulletin of the Russian Academy of Sciences: Physics, Vol. 87 (2023), Iss. 1 P.83

    https://doi.org/10.3103/S1062873822700198 [Citations: 0]
  20. Simulation of a falling droplet in a vertical channel with rectangular obstacles

    Merdasi, Arshia | Ebrahimi, Saman | Moosavi, Ali | Shafii, Mohammad Behshad | Kowsary, Farshad

    European Journal of Mechanics - B/Fluids, Vol. 68 (2018), Iss. P.108

    https://doi.org/10.1016/j.euromechflu.2017.11.002 [Citations: 11]
  21. A numerical study on splash of oblique drop impact on wet walls

    Cheng, M. | Lou, J.

    Computers & Fluids, Vol. 115 (2015), Iss. P.11

    https://doi.org/10.1016/j.compfluid.2015.03.019 [Citations: 48]
  22. Fast droplets impacting liquid layer under a small angle: a numerical analysis of experimental observations

    Cherdantsev, Andrey | Vozhakov, Ivan

    International Journal of Multiphase Flow, Vol. 175 (2024), Iss. P.104810

    https://doi.org/10.1016/j.ijmultiphaseflow.2024.104810 [Citations: 0]
  23. A Low Mach Number IMEX Flux Splitting for the Level Set Ghost Fluid Method

    Zeifang, Jonas | Beck, Andrea

    Communications on Applied Mathematics and Computation, Vol. 5 (2023), Iss. 2 P.722

    https://doi.org/10.1007/s42967-021-00137-2 [Citations: 1]
  24. Level set method for computational multi-fluid dynamics: A review on developments, applications and analysis

    SHARMA, ATUL

    Sadhana, Vol. 40 (2015), Iss. 3 P.627

    https://doi.org/10.1007/s12046-014-0329-3 [Citations: 34]