Journals
Resources
About Us
Open Access

A Review of Residual Distribution Schemes for Hyperbolic and Parabolic Problems: The July 2010 State of the Art

Year:    2012

Communications in Computational Physics, Vol. 11 (2012), Iss. 4 : pp. 1043–1080

Abstract

We describe and review non oscillatory residual distribution schemes that are rather natural extension of high order finite volume schemes when a special emphasis is put on the structure of the computational stencil. We provide their connections with standard stabilized finite element and discontinuous Galerkin schemes, show that their are really non oscillatory. We also discuss the extension to these methods to parabolic problems. We also draw some research perspectives. 

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.270710.130711s

Communications in Computational Physics, Vol. 11 (2012), Iss. 4 : pp. 1043–1080

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    38

Keywords:   

  1. A Grid-Insensitive LDA Method on Triangular Grids Solving the System of Euler Equations

    Chizari, Hossain | Ismail, Farzad

    Journal of Scientific Computing, Vol. 71 (2017), Iss. 2 P.839

    https://doi.org/10.1007/s10915-016-0323-5 [Citations: 17]
  2. Developments of entropy-stable residual distribution methods for conservation laws I: Scalar problems

    Ismail, Farzad | Chizari, Hossain

    Journal of Computational Physics, Vol. 330 (2017), Iss. P.1093

    https://doi.org/10.1016/j.jcp.2016.10.065 [Citations: 17]
  3. Simulation of hydrogen diffusion affected by stress-strain heterogeneity in polycrystalline stainless steel

    Ilin, Dmitrii N. | Saintier, Nicolas | Olive, Jean-Marc | Abgrall, Remi | Aubert, Isabelle

    International Journal of Hydrogen Energy, Vol. 39 (2014), Iss. 5 P.2418

    https://doi.org/10.1016/j.ijhydene.2013.11.065 [Citations: 48]
  4. Handbook of Numerical Methods for Hyperbolic Problems - Applied and Modern Issues

    Numerical Methods for the Nonlinear Shallow Water Equations

    Xing, Y.

    2017

    https://doi.org/10.1016/bs.hna.2016.09.003 [Citations: 14]
  5. Accuracy Variations in Residual Distribution and Finite Volume Methods on Triangular Grids

    Chizari, Hossain | Ismail, Farzad

    Bulletin of the Malaysian Mathematical Sciences Society, Vol. 40 (2017), Iss. 3 P.1231

    https://doi.org/10.1007/s40840-015-0292-0 [Citations: 16]
  6. An explicit residual based approach for shallow water flows

    Ricchiuto, Mario

    Journal of Computational Physics, Vol. 280 (2015), Iss. P.306

    https://doi.org/10.1016/j.jcp.2014.09.027 [Citations: 47]
  7. On hybrid residual distribution–Galerkin discretizations for steady and time dependent viscous laminar flows

    Dobeš, Jiří | Ricchiuto, Mario | Abgrall, Rémi | Deconinck, Herman

    Computer Methods in Applied Mechanics and Engineering, Vol. 283 (2015), Iss. P.1336

    https://doi.org/10.1016/j.cma.2014.09.002 [Citations: 4]
  8. Matrix-free subcell residual distribution for Bernstein finite elements: Monolithic limiting

    Hajduk, Hennes | Kuzmin, Dmitri | Kolev, Tzanio | Tomov, Vladimir | Tomas, Ignacio | Shadid, John N.

    Computers & Fluids, Vol. 200 (2020), Iss. P.104451

    https://doi.org/10.1016/j.compfluid.2020.104451 [Citations: 12]
  9. High-order shock-capturing hyperbolic residual-distribution schemes on irregular triangular grids

    Mazaheri, Alireza | Nishikawa, Hiroaki

    Computers & Fluids, Vol. 131 (2016), Iss. P.29

    https://doi.org/10.1016/j.compfluid.2016.03.012 [Citations: 5]
  10. A new Runge–Kutta discontinuous Galerkin method with conservation constraint to improve CFL condition for solving conservation laws

    Xu, Zhiliang | Chen, Xu-Yan | Liu, Yingjie

    Journal of Computational Physics, Vol. 278 (2014), Iss. P.348

    https://doi.org/10.1016/j.jcp.2014.08.042 [Citations: 8]
  11. High order central WENO-Implicit-Explicit Runge Kutta schemes for the BGK model on general polygonal meshes

    Boscheri, Walter | Dimarco, Giacomo

    Journal of Computational Physics, Vol. 422 (2020), Iss. P.109766

    https://doi.org/10.1016/j.jcp.2020.109766 [Citations: 19]
  12. Improved second-order hyperbolic residual-distribution scheme and its extension to third-order on arbitrary triangular grids

    Mazaheri, Alireza | Nishikawa, Hiroaki

    Journal of Computational Physics, Vol. 300 (2015), Iss. P.455

    https://doi.org/10.1016/j.jcp.2015.07.054 [Citations: 23]
  13. On Flux-Difference Residual Distribution Methods

    Ismail, Farzad | Chang, Wei Shyang | Chizari, Hossain

    Bulletin of the Malaysian Mathematical Sciences Society, Vol. 41 (2018), Iss. 3 P.1629

    https://doi.org/10.1007/s40840-017-0559-8 [Citations: 7]
  14. Is Discontinuous Reconstruction Really a Good Idea?

    Roe, Philip

    Journal of Scientific Computing, Vol. 73 (2017), Iss. 2-3 P.1094

    https://doi.org/10.1007/s10915-017-0555-z [Citations: 24]
  15. Remapping-Free Adaptive GRP Method for Multi-Fluid Flows I: One Dimensional Euler Equations

    Qi, Jin | Wang, Yue | Li, Jiequan

    Communications in Computational Physics, Vol. 15 (2014), Iss. 4 P.1029

    https://doi.org/10.4208/cicp.140313.111013s [Citations: 4]
  16. A new residual distribution hydrodynamics solver for astrophysical simulations

    Morton, B | Khochfar, S | Wu, Z

    Monthly Notices of the Royal Astronomical Society, Vol. 518 (2022), Iss. 3 P.4401

    https://doi.org/10.1093/mnras/stac3427 [Citations: 1]
  17. Convergence of discontinuous Galerkin schemes for the Euler equations via dissipative weak solutions

    Lukáčová-Medvid’ová, Mária | Öffner, Philipp

    Applied Mathematics and Computation, Vol. 436 (2023), Iss. P.127508

    https://doi.org/10.1016/j.amc.2022.127508 [Citations: 1]
  18. Time-explicit numerical methods for Maxwell’s equation in second-order form

    Neoh, S.S. | Ismail, F.

    Applied Mathematics and Computation, Vol. 392 (2021), Iss. P.125669

    https://doi.org/10.1016/j.amc.2020.125669 [Citations: 2]
  19. Matrix-free subcell residual distribution for Bernstein finite element discretizations of linear advection equations

    Hajduk, Hennes | Kuzmin, Dmitri | Kolev, Tzanio | Abgrall, Remi

    Computer Methods in Applied Mechanics and Engineering, Vol. 359 (2020), Iss. P.112658

    https://doi.org/10.1016/j.cma.2019.112658 [Citations: 14]
  20. Stability and Boundary Resolution Analysis of the Discontinuous Galerkin Method Applied to the Reynolds-Averaged Navier--Stokes Equations Using the Spalart--Allmaras Model

    Drosson, Marcus | Hillewaert, Koen | Essers, Jean-André

    SIAM Journal on Scientific Computing, Vol. 35 (2013), Iss. 3 P.B666

    https://doi.org/10.1137/110834615 [Citations: 5]
  21. Numerical Dissipation Control in High-Order Methods for Compressible Turbulence: Recent Development

    Yee, H. | Sjögreen, Björn

    Fluids, Vol. 9 (2024), Iss. 6 P.127

    https://doi.org/10.3390/fluids9060127 [Citations: 1]
  22. High-Order Residual-Distribution Schemes for Discontinuous Problems on Irregular Triangular Grids

    Mazaheri, Alireza R. | Nishikawa, Hiroaki

    54th AIAA Aerospace Sciences Meeting, (2016),

    https://doi.org/10.2514/6.2016-1331 [Citations: 0]
  23. Upwind residual distribution for shallow-water ocean modelling

    Sármány, D. | Hubbard, M.E.

    Ocean Modelling, Vol. 64 (2013), Iss. P.1

    https://doi.org/10.1016/j.ocemod.2012.12.013 [Citations: 4]
  24. A discontinuous Galerkin method for the Aw-Rascle traffic flow model on networks

    Buli, Joshua | Xing, Yulong

    Journal of Computational Physics, Vol. 406 (2020), Iss. P.109183

    https://doi.org/10.1016/j.jcp.2019.109183 [Citations: 10]
  25. Model order reduction for parametrized nonlinear hyperbolic problems as an application to uncertainty quantification

    Crisovan, R. | Torlo, D. | Abgrall, R. | Tokareva, S.

    Journal of Computational and Applied Mathematics, Vol. 348 (2019), Iss. P.466

    https://doi.org/10.1016/j.cam.2018.09.018 [Citations: 16]
  26. Relaxation Deferred Correction Methods and their Applications to Residual Distribution Schemes

    Abgrall, Rémi | Le Mélédo, Élise | Öffner, Philipp | Torlo, Davide

    The SMAI Journal of computational mathematics, Vol. 8 (2022), Iss. P.125

    https://doi.org/10.5802/smai-jcm.82 [Citations: 12]
  27. A posteriori correction of high-order discontinuous Galerkin scheme through subcell finite volume formulation and flux reconstruction

    Vilar, François

    Journal of Computational Physics, Vol. 387 (2019), Iss. P.245

    https://doi.org/10.1016/j.jcp.2018.10.050 [Citations: 57]