Extension of the High-Order Space-Time Discontinuous Galerkin Cell Vertex Scheme to Solve Time Dependent Diffusion Equations
Year: 2012
Communications in Computational Physics, Vol. 11 (2012), Iss. 5 : pp. 1503–1524
Abstract
In this paper, the high-order space-time discontinuous Galerkin cell vertex scheme (DG-CVS) developed by the authors for hyperbolic conservation laws is extended for time dependent diffusion equations. In the extension, the treatment of the diffusive flux is exactly the same as that for the advective flux. Thanks to the Riemann-solver-free and reconstruction-free features of DG-CVS, both the advective flux and the diffusive flux are evaluated using continuous information across the cell interface. As a result, the resulting formulation with diffusive fluxes present is still consistent and does not need any extra ad hoc techniques to cure the common "variational crime" problem when traditional DG methods are applied to diffusion problems. For this reason, DG-CVS is conceptually simpler than other existing DG-typed methods. The numerical tests demonstrate that the convergence order based on the L2-norm is optimal, i.e. O(hp+1) for the solution and O(hp) for the solution gradients, when the basis polynomials are of odd degrees. For even-degree polynomials, the convergence order is sub-optimal for the solution and optimal for the solution gradients. The same odd-even behaviour can also be seen in some other DG-typed methods.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.050810.090611a
Communications in Computational Physics, Vol. 11 (2012), Iss. 5 : pp. 1503–1524
Published online: 2012-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 22
-
A Riemann-Solver Free Spacetime Discontinuous Galerkin Method for General Conservation Laws
Tu, Shuang Z.
American Journal of Computational Mathematics, Vol. 05 (2015), Iss. 02 P.55
https://doi.org/10.4236/ajcm.2015.52004 [Citations: 3] -
Space-Time Discontinuous Galerkin Method for Maxwell’s Equations
Xie, Ziqing | Wang, Bo | Zhang, ZhiminCommunications in Computational Physics, Vol. 14 (2013), Iss. 4 P.916
https://doi.org/10.4208/cicp.230412.271212a [Citations: 10] -
Comparison of Three Riemann-solver-free Cell-Vertex Schemes for Conservation Laws
Tu, Shuangzhang
2018 AIAA Aerospace Sciences Meeting, (2018),
https://doi.org/10.2514/6.2018-0832 [Citations: 0] -
Accuracy Enhancement of a Riemann-Solver-Free Spacetime Discontinuous Galerkin Method via Constrained Least Square Reconstruction
Tu, Shuangzhang | Pang, Qing46th AIAA Fluid Dynamics Conference, (2016),
https://doi.org/10.2514/6.2016-3495 [Citations: 0] -
Development of the High-Order Space-Time Discontinuous Galerkin Cell Vertex Scheme (DG-CVS) for Moving Mesh Problems
Tu, Shuangzhang | Pang, Qing42nd AIAA Fluid Dynamics Conference and Exhibit, (2012),
https://doi.org/10.2514/6.2012-2835 [Citations: 1] -
A Riemann-solver-free Runge-Kutta Discontinuous Galerkin Method for Conservation Laws
Tu, Shuangzhang
23rd AIAA Computational Fluid Dynamics Conference, (2017),
https://doi.org/10.2514/6.2017-3949 [Citations: 1] -
Riemann-solver Free Space-time Discontinuous Galerkin Method for Magnetohydrodynamics
Tu, Shuangzhang
44th AIAA Plasmadynamics and Lasers Conference, (2013),
https://doi.org/10.2514/6.2013-2755 [Citations: 1]