A Cluster Dynamics Model for Accumulation of Helium in Tungsten under Helium Ions and Neutron Irradiation

A Cluster Dynamics Model for Accumulation of Helium in Tungsten under Helium Ions and Neutron Irradiation

Year:    2012

Communications in Computational Physics, Vol. 11 (2012), Iss. 5 : pp. 1547–1568

Abstract

A cluster dynamics model based on rate theory has been developed to describe the accumulation and diffusion processes of helium in tungsten under helium implantation alone or synergistic irradiation with neutron, by involving different types of objects, adopting up-to-date parameters and complex reaction processes as well as considering the diffusion process along with depth. The calculated results under different conditions are in good agreement with experiments much well. The model describes the behavior of helium in tungsten within 2D space of defect type/size and depth on different ions incident conditions (energies and fluences) and material conditions (system temperature and existent sinks), by including the synergistic effect of helium-neutron irradiations and the influence of inherent sinks (dislocation lines and grain boundaries). The model, coded as IRadMat, would be universally applicable to the evolution of defects for ions/neutron irradiated on plasma-facing materials.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.030311.090611a

Communications in Computational Physics, Vol. 11 (2012), Iss. 5 : pp. 1547–1568

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    22

Keywords:   

  1. Accurate prediction of vacancy cluster structures and energetics in bcc transition metals

    Hou, Jie | You, Yu-Wei | Kong, Xiang-Shan | Song, Jun | Liu, C.S.

    Acta Materialia, Vol. 211 (2021), Iss. P.116860

    https://doi.org/10.1016/j.actamat.2021.116860 [Citations: 28]
  2. Microstructural evolution and regeneration in neutron-irradiated tungsten monoblocks

    Mannheim, A. | van Dommelen, J.A.W. | Geers, M.G.D.

    International Journal of Engineering Science, Vol. 142 (2019), Iss. P.36

    https://doi.org/10.1016/j.ijengsci.2019.05.004 [Citations: 5]
  3. Helium effects on tungsten under fusion-relevant plasma loading conditions

    De Temmerman, G. | Bystrov, K. | Doerner, R.P. | Marot, L. | Wright, G.M. | Woller, K.B. | Whyte, D.G. | Zielinski, J.J.

    Journal of Nuclear Materials, Vol. 438 (2013), Iss. P.S78

    https://doi.org/10.1016/j.jnucmat.2013.01.012 [Citations: 92]
  4. Cluster dynamics modeling of hydrogen retention and desorption in tungsten with saturation and multi-trapping effect of sinks

    Chen, Xiaoru | Zhang, Yuanyuan | Wei, Liuming | Zheng, Qirong | Zhang, Chuanguo | Li, Yonggang

    Nuclear Fusion, Vol. 64 (2024), Iss. 9 P.096037

    https://doi.org/10.1088/1741-4326/ad6913 [Citations: 0]
  5. Effects of interstitial cluster mobility on dislocation loops evolution under irradiation of austenitic steel

    Yan, Xin-Hua | Sun, Lu | Zhou, Du | Xie, Teng | Peng, Chang | Yang, Ye-Xin | Chen, Li | Tong, Zhen-Feng

    Nuclear Science and Techniques, Vol. 35 (2024), Iss. 8

    https://doi.org/10.1007/s41365-024-01493-3 [Citations: 0]
  6. Multi-scale fracture probability analysis of tungsten monoblocks under fusion conditions

    Oude Vrielink, M.A. | van Dommelen, J.A.W. | Geers, M.G.D.

    Nuclear Materials and Energy, Vol. 28 (2021), Iss. P.101032

    https://doi.org/10.1016/j.nme.2021.101032 [Citations: 2]
  7. Cluster dynamics simulation of deuterium retention behaviors in irradiated beryllium

    Hu, L. | Li, Y. G. | Zhang, C. G. | Zeng, Z.

    RSC Advances, Vol. 5 (2015), Iss. 81 P.65750

    https://doi.org/10.1039/C5RA08948D [Citations: 14]
  8. Grouping Methods of Cluster Dynamics Model for Precipitation Kinetics

    Xu, Kun | Thomas, Brian G. | Wu, Yueyue | Wang, Haichuan | Kong, Hui | Wu, Zhaoyang

    Metals, Vol. 10 (2020), Iss. 12 P.1685

    https://doi.org/10.3390/met10121685 [Citations: 1]
  9. Absorption bias: A descriptor for radiation tolerance of polycrystalline BCC metals

    Wei, Liuming | Zhao, Zhe | Li, Yonggang | Zheng, Qirong | Zhang, Chuanguo | Li, Jingyu | Zhao, Gaofeng | Da, Bo | Zeng, Zhi

    Journal of Nuclear Materials, Vol. 600 (2024), Iss. P.155295

    https://doi.org/10.1016/j.jnucmat.2024.155295 [Citations: 0]
  10. Simulation of neutron irradiation-induced recrystallization of tungsten

    Zhang, Guo-Shuai | Yin, Chao | Wang, Zhao-Fan | Chen, Ze | Mao, Shi-Feng | Ye, Min-You

    Acta Physica Sinica, Vol. 72 (2023), Iss. 16 P.162801

    https://doi.org/10.7498/aps.72.20230531 [Citations: 1]
  11. A method to obtain the trapping energy and trapping range between hydrogen and defects at finite temperature

    Ming, Zhengyang | Chen, Ze | Wang, Zhaofan | Yin, Chao | Mao, Shifeng | Ye, Minyou

    Journal of Applied Physics, Vol. 136 (2024), Iss. 8

    https://doi.org/10.1063/5.0220312 [Citations: 0]
  12. Initial microstructure and temperature dependence of irradiation defects evolution in tungsten

    Ma, Hui-Zhi | Li, Yu-Hao | Niu, Yu-Ze | Terentyev, Dmitry | Yang, Zhangcan | Zhou, Hong-Bo | Lu, Guang-Hong

    Journal of Nuclear Materials, Vol. 591 (2024), Iss. P.154932

    https://doi.org/10.1016/j.jnucmat.2024.154932 [Citations: 0]
  13. Ion radiation albedo effect: influence of surface roughness on ion implantation and sputtering of materials

    Li, Yonggang | Yang, Yang | Short, Michael P. | Ding, Zejun | Zeng, Zhi | Li, Ju

    Nuclear Fusion, Vol. 57 (2017), Iss. 1 P.016038

    https://doi.org/10.1088/1741-4326/57/1/016038 [Citations: 24]
  14. Modelling the brittle-to-ductile transition of high-purity tungsten under neutron irradiation

    Oude Vrielink, M.A. | Shah, V. | van Dommelen, J.A.W. | Geers, M.G.D.

    Journal of Nuclear Materials, Vol. 554 (2021), Iss. P.153068

    https://doi.org/10.1016/j.jnucmat.2021.153068 [Citations: 4]
  15. Modeling tungsten response under helium plasma irradiation: a review

    YANG, Zhangcan | FAN, Junyi

    Plasma Science and Technology, Vol. 24 (2022), Iss. 12 P.124006

    https://doi.org/10.1088/2058-6272/ac9f8f [Citations: 1]
  16. Off-stoichiometric defect clustering in irradiated oxides

    Khalil, Sarah | Allen, Todd | EL-Azab, Anter

    Chemical Physics, Vol. 487 (2017), Iss. P.1

    https://doi.org/10.1016/j.chemphys.2017.01.014 [Citations: 19]
  17. Neutron irradiation-enhanced grain growth in tungsten and tungsten alloys

    Gietl, Hanns | Koyanagi, Takaaki | Hu, Xunxiang | Fukuda, Makoto | Hasegawa, Akira | Katoh, Yutai

    Journal of Alloys and Compounds, Vol. 901 (2022), Iss. P.163419

    https://doi.org/10.1016/j.jallcom.2021.163419 [Citations: 27]
  18. Long-term microstructural evolution of tungsten under heat and neutron loads

    Mannheim, A. | van Dommelen, J.A.W. | Geers, M.G.D.

    Computational Materials Science, Vol. 170 (2019), Iss. P.109146

    https://doi.org/10.1016/j.commatsci.2019.109146 [Citations: 6]
  19. Characterization of high flux magnetized helium plasma in SCU-PSI linear device

    MA, Xiaochun | CAO, Xiaogang | HAN, Lei | ZHANG, Zhiyan | WEI, Jianjun | GOU, Fujun

    Plasma Science and Technology, Vol. 20 (2018), Iss. 2 P.025104

    https://doi.org/10.1088/2058-6272/aa936e [Citations: 12]
  20. Modeling D retention in W under D ions and neutrons irradiation

    Ning, R.H. | Li, Y.G. | Zhou, W.H. | Zeng, Z. | Ju, X.

    Journal of Nuclear Materials, Vol. 430 (2012), Iss. 1-3 P.20

    https://doi.org/10.1016/j.jnucmat.2012.06.029 [Citations: 16]
  21. AN IMPROVED CLUSTER DYNAMICS MODEL FOR HYDROGEN RETENTION IN TUNGSTEN

    NING, R. H. | LI, Y. G. | ZHOU, W. H. | ZENG, Z. | JU, X.

    International Journal of Modern Physics C, Vol. 23 (2012), Iss. 06 P.1250042

    https://doi.org/10.1142/S0129183112500428 [Citations: 13]
  22. Spatially dependent kinetics of helium in tungsten under fusion conditions

    Shah, V. | van Dommelen, J.A.W. | Geers, M.G.D.

    Journal of Nuclear Materials, Vol. 535 (2020), Iss. P.152104

    https://doi.org/10.1016/j.jnucmat.2020.152104 [Citations: 13]
  23. A review of modelling and simulation of hydrogen behaviour in tungsten at different scales

    Lu, Guang-Hong | Zhou, Hong-Bo | Becquart, Charlotte S.

    Nuclear Fusion, Vol. 54 (2014), Iss. 8 P.086001

    https://doi.org/10.1088/0029-5515/54/8/086001 [Citations: 173]
  24. Theoretical Model of Helium Bubble Growth and Density in Plasma-Facing Metals

    Hammond, Karl D. | Maroudas, Dimitrios | Wirth, Brian D.

    Scientific Reports, Vol. 10 (2020), Iss. 1

    https://doi.org/10.1038/s41598-020-58581-8 [Citations: 35]
  25. Cluster dynamics modeling of accumulation and diffusion of helium in neutron irradiated tungsten

    Li, Y.G. | Zhou, W.H. | Huang, L.F. | Zeng, Z. | Ju, X.

    Journal of Nuclear Materials, Vol. 431 (2012), Iss. 1-3 P.26

    https://doi.org/10.1016/j.jnucmat.2011.12.015 [Citations: 34]
  26. Statistical analysis of helium bubbles in transmission electron microscopy images based on machine learning method

    Wu, Zhong-Hang | Bai, Ju-Ju | Zhang, Di-Da | Huang, Gang | Zhu, Tian-Bao | Chang, Xi-Jiang | Liu, Ren-Duo | Lin, Jun | Sun, Jiu-Ai

    Nuclear Science and Techniques, Vol. 32 (2021), Iss. 5

    https://doi.org/10.1007/s41365-021-00886-y [Citations: 16]
  27. Tritium diffusion challenges on future nuclear fusion reactors

    Moral, Nuria | Moral, Octavio Gonzalez-del | Garoz, David | Alvarez, Jesus | Perlado, Jose M.

    2013 IEEE 25th Symposium on Fusion Engineering (SOFE), (2013), P.1

    https://doi.org/10.1109/SOFE.2013.6635392 [Citations: 1]
  28. Helium flux effects on bubble growth and surface morphology in plasma-facing tungsten from large-scale molecular dynamics simulations

    Hammond, Karl D. | Naeger, Ian V. | Widanagamaachchi, Wathsala | Lo, Li-Ta | Maroudas, Dimitrios | Wirth, Brian D.

    Nuclear Fusion, Vol. 59 (2019), Iss. 6 P.066035

    https://doi.org/10.1088/1741-4326/ab12f6 [Citations: 43]
  29. He-ion induced surface morphology change and nanofuzz growth on hot tungsten surfaces

    Meyer, F W

    Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 52 (2019), Iss. 1 P.012001

    https://doi.org/10.1088/1361-6455/aaf060 [Citations: 18]
  30. Investigation of Helium Behavior in RAFM Steel by Positron Annihilation Doppler Broadening and Thermal Desorption Spectroscopy

    Shen, Zhenyu | Guo, Liping | Zhang, Weiping | Jin, Shuoxue | Cao, Xingzhong | Long, Yunxiang | Wei, Yaxia

    Materials, Vol. 11 (2018), Iss. 9 P.1523

    https://doi.org/10.3390/ma11091523 [Citations: 4]
  31. Theoretical study on the correlation of swelling peaks between neutron and heavy ion irradiated 15-15Ti stainless steel

    Wen, A.-Li | Zhang, Qiao-Li | Fan, Ping | Ma, Hai-Liang | Li, Ke | Ren, Cui-Lan | Huang, He-Fei | Zhu, Sheng-yun | Yuan, Da-Qing

    Journal of Applied Physics, Vol. 132 (2022), Iss. 22

    https://doi.org/10.1063/5.0103468 [Citations: 1]
  32. GPU-based acceleration of Monte Carlo simulations for migration-coalescence evolution of gas bubbles in materials

    Zhai, Lei | Ma, Chaoqiong | Cui, Jiechao | Hou, Qing

    Modelling and Simulation in Materials Science and Engineering, Vol. 27 (2019), Iss. 5 P.055008

    https://doi.org/10.1088/1361-651X/ab1d14 [Citations: 0]
  33. A reduced cluster dynamics modeling of radiation damage in tungsten

    Li, Zhiyuan | Ding, Gaowen | Liu, Pengchuang | Cong, Tenglong | Li, Yang

    Nuclear Materials and Energy, Vol. 41 (2024), Iss. P.101814

    https://doi.org/10.1016/j.nme.2024.101814 [Citations: 0]
  34. Effect of grain size on the behavior of hydrogen/helium retention in tungsten: a cluster dynamics modeling

    Zhao, Zhe | Li, Yonggang | Zhang, Chuanguo | Pan, Guyue | Tang, Panfei | Zeng, Zhi

    Nuclear Fusion, Vol. 57 (2017), Iss. 8 P.086020

    https://doi.org/10.1088/1741-4326/aa7640 [Citations: 31]
  35. A GPU-based parallel Object kinetic Monte Carlo algorithm for the evolution of defects in irradiated materials

    Jiménez, F. | Ortiz, C.J.

    Computational Materials Science, Vol. 113 (2016), Iss. P.178

    https://doi.org/10.1016/j.commatsci.2015.11.011 [Citations: 22]
  36. Modelling recrystallization and grain growth of tungsten induced by neutron displacement defects

    Mannheim, A. | van Dommelen, J.A.W. | Geers, M.G.D.

    Mechanics of Materials, Vol. 123 (2018), Iss. P.43

    https://doi.org/10.1016/j.mechmat.2018.04.008 [Citations: 22]
  37. Dynamical behaviors of self-interstitial atoms in tungsten

    Zhou, W.H. | Li, Y.G. | Huang, L.F. | Zeng, Z. | Ju, X.

    Journal of Nuclear Materials, Vol. 437 (2013), Iss. 1-3 P.438

    https://doi.org/10.1016/j.jnucmat.2013.02.075 [Citations: 17]
  38. The Accumulation of He on a W Surface During keV-He Irradiation: Cluster Dynamics Modeling

    Li, Yonggang | Zhou, Wanghuai | Huang, Liangfeng | Ning, Ronghui | Zeng, Zhi | Ju, Xin

    Plasma Science and Technology, Vol. 14 (2012), Iss. 7 P.624

    https://doi.org/10.1088/1009-0630/14/7/13 [Citations: 7]
  39. Simulation of defect evolution in tungsten during annealing by developing a vacancy and interstitial-type defect evolution model

    Wang, Zhenhou | Sang, Chaofeng | Wang, Dezhen

    Physica Scripta, Vol. 99 (2024), Iss. 2 P.025617

    https://doi.org/10.1088/1402-4896/ad1fc8 [Citations: 0]
  40. The interaction of dislocations and hydrogen-vacancy complexes and its importance for deformation-induced proto nano-voids formation in α-Fe

    Li, Suzhi | Li, Yonggang | Lo, Yu-Chieh | Neeraj, Thirumalai | Srinivasan, Rajagopalan | Ding, Xiangdong | Sun, Jun | Qi, Liang | Gumbsch, Peter | Li, Ju

    International Journal of Plasticity, Vol. 74 (2015), Iss. P.175

    https://doi.org/10.1016/j.ijplas.2015.05.017 [Citations: 156]
  41. A First Simulation Study of Hydrogen Isotope Accumulation and Diffusion in Tungsten First Wall of HiPER Inertial Fusion Facility

    Moral, Nuria | Perlado, José Manuel | Álvarez, Jesús

    Fusion Science and Technology, Vol. 65 (2014), Iss. 3 P.355

    https://doi.org/10.13182/FST13-686 [Citations: 2]
  42. Neutron irradiation-induced recrystallization simulation for tungsten in nuclear fusion device

    Yin, Chao | Zhang, Guoshuai | Wang, Zhaofan | Chen, Ze | Mao, Shifeng | Ye, M.Y.

    International Journal of Refractory Metals and Hard Materials, Vol. 121 (2024), Iss. P.106635

    https://doi.org/10.1016/j.ijrmhm.2024.106635 [Citations: 0]
  43. Key factors in radiation tolerance of BCC metals under steady state

    Wei, Liuming | Li, Yonggang | Zhao, Gaofeng | Zheng, Qirong | Li, Jingwen | Zeng, Zhi

    Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 455 (2019), Iss. P.134

    https://doi.org/10.1016/j.nimb.2019.06.032 [Citations: 10]
  44. A review of surface damage/microstructures and their effects on hydrogen/helium retention in tungsten

    Li, Yong-Gang | Zheng, Qi-Rong | Wei, Liu-Ming | Zhang, Chuan-Guo | Zeng, Zhi

    Tungsten, Vol. 2 (2020), Iss. 1 P.34

    https://doi.org/10.1007/s42864-020-00042-w [Citations: 43]
  45. Controlled irradiation hardening of tungsten by cyclic recrystallization

    Mannheim, A | van Dommelen, J A W | Geers, M G D

    Modelling and Simulation in Materials Science and Engineering, Vol. 27 (2019), Iss. 6 P.065001

    https://doi.org/10.1088/1361-651X/ab1eec [Citations: 7]
  46. Flux threshold measurements of He-ion beam induced nanofuzz formation on hot tungsten surfaces

    Meyer, F W | Hijazi, H | Bannister, M E | Unocic, K A | Garrison, L M | Parish, C M

    Physica Scripta, Vol. T167 (2016), Iss. P.014019

    https://doi.org/10.1088/0031-8949/T167/1/014019 [Citations: 19]