A Class of Hybrid DG/FV Methods for Conservation Laws III: Two-Dimensional Euler Equations

A Class of Hybrid DG/FV Methods for Conservation Laws III: Two-Dimensional Euler Equations

Year:    2012

Communications in Computational Physics, Vol. 12 (2012), Iss. 1 : pp. 284–314

Abstract

A concept of "static reconstruction" and "dynamic reconstruction" was introduced for higher-order (third-order or more) numerical methods in our previous work. Based on this concept, a class of hybrid DG/FV methods had been developed for one-dimensional conservation law using a "hybrid reconstruction" approach, and extended to two-dimensional scalar equations on triangular and Cartesian/triangular hybrid grids. In the hybrid DG/FV schemes, the lower-order derivatives of the piecewise polynomial are computed locally in a cell by the traditional DG method (called as "dynamic reconstruction"), while the higher-order derivatives are reconstructed by the "static reconstruction" of the FV method, using the known lower-order derivatives in the cell itself and in its adjacent neighboring cells. In this paper, the hybrid DG/FV schemes are extended to two-dimensional Euler equations on triangular and Cartesian/triangular hybrid grids. Some typical test cases are presented to demonstrate the performance of the hybrid DG/FV methods, including the standard vortex evolution problem with exact solution, isentropic vortex/weak shock wave interaction, subsonic flows past a circular cylinder and a three-element airfoil (30P30N), transonic flow past a NACA0012 airfoil. The accuracy study shows that the hybrid DG/FV method achieves the desired third-order accuracy, and the applications demonstrate that they can capture the flow structure accurately, and can reduce the CPU time and memory requirement greatly than the traditional DG method with the same order of accuracy.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.210111.140711a

Communications in Computational Physics, Vol. 12 (2012), Iss. 1 : pp. 284–314

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    31

Keywords:   

  1. A hierarchical reconstruction for DG/FV method with low dispersion: Basic formulation and applications

    Zhao, Ming | Wang, Xian | Li, Xiaojian | Liu, Zhengxian | Liu, Wei | Yang, Ke

    Computers & Fluids, Vol. 231 (2021), Iss. P.105175

    https://doi.org/10.1016/j.compfluid.2021.105175 [Citations: 0]
  2. A Multi-Domain Hybrid DG and WENO Method for Hyperbolic Conservation Laws on Hybrid Meshes

    Cheng, Jian | Liu, Tiegang

    Communications in Computational Physics, Vol. 16 (2014), Iss. 4 P.1116

    https://doi.org/10.4208/cicp.060313.300514a [Citations: 1]
  3. An Implicit Algorithm for High-Order DG/FV Schemes for Compressible Flows on 2D Arbitrary Grids

    Zhang, Laiping | Li, Ming | Liu, Wei | He, Xin

    Communications in Computational Physics, Vol. 17 (2015), Iss. 1 P.287

    https://doi.org/10.4208/cicp.091113.280714a [Citations: 3]
  4. High order sub-cell finite volume schemes for solving hyperbolic conservation laws I: basic formulation and one-dimensional analysis

    Pan, JianHua | Ren, YuXin

    Science China Physics, Mechanics & Astronomy, Vol. 60 (2017), Iss. 8

    https://doi.org/10.1007/s11433-017-9033-9 [Citations: 6]
  5. High order sub-cell finite volume schemes for solving hyperbolic conservation laws II: Extension to two-dimensional systems on unstructured grids

    Pan, Jianhua | Ren, Yu-xin | Sun, Yutao

    Journal of Computational Physics, Vol. 338 (2017), Iss. P.165

    https://doi.org/10.1016/j.jcp.2017.02.052 [Citations: 9]
  6. A $$P_N P_M{-} CPR $$ P N P M - C P R Framework for Hyperbolic Conservation Laws

    Shi, Lei | Wang, Z. J. | Zhang, L. P. | Liu, Wei | Fu, Song

    Journal of Scientific Computing, Vol. 61 (2014), Iss. 2 P.281

    https://doi.org/10.1007/s10915-014-9829-x [Citations: 0]
  7. Detached Eddy Simulation of Complex Separation Flows Over a Modern Fighter Model at High Angle of Attack

    Zhang, Yang | Zhang, Laiping | He, Xin | Deng, Xiaogang | Sun, Haisheng

    Communications in Computational Physics, Vol. 22 (2017), Iss. 5 P.1309

    https://doi.org/10.4208/cicp.OA-2016-0132 [Citations: 6]
  8. Some recent progress of high-order methods on structured and unstructured grids in CARDC

    Zhang, H.X. | Zhang, L.P. | Zhang, S.H. | Li, Q.

    Computers & Fluids, Vol. 154 (2017), Iss. P.371

    https://doi.org/10.1016/j.compfluid.2016.10.006 [Citations: 7]
  9. A class of hybrid DG/FV methods for conservation laws II: Two-dimensional cases

    Zhang, Laiping | Wei, Liu | Lixin, He | Xiaogang, Deng | Hanxin, Zhang

    Journal of Computational Physics, Vol. 231 (2012), Iss. 4 P.1104

    https://doi.org/10.1016/j.jcp.2011.03.032 [Citations: 74]
  10. Applications of High Order Hybrid DG/FV Schemes for Two-dimensional RANS Simulations

    Li, Ming | Liu, Wei | Zhang, Laiping | He, Xin

    Procedia Engineering, Vol. 126 (2015), Iss. P.628

    https://doi.org/10.1016/j.proeng.2015.11.251 [Citations: 4]
  11. A class of DG/FV hybrid schemes for conservation law IV: 2D viscous flows and implicit algorithm for steady cases

    Zhang, Laiping | Liu, Wei | Li, Ming | He, Xin | Zhang, Hanxin

    Computers & Fluids, Vol. 97 (2014), Iss. P.110

    https://doi.org/10.1016/j.compfluid.2014.04.002 [Citations: 24]