On the Volume Conservation of the Immersed Boundary Method

On the Volume Conservation of the Immersed Boundary Method

Year:    2012

Communications in Computational Physics, Vol. 12 (2012), Iss. 2 : pp. 401–432

Abstract

The immersed boundary (IB) method is an approach to problems of fluid-structure interaction in which an elastic structure is immersed in a viscous incompressible fluid. The IB formulation of such problems uses a Lagrangian description of the structure and an Eulerian description of the fluid. It is well known that some versions of the IB method can suffer from poor volume conservation. Methods have been introduced to improve the volume-conservation properties of the IB method, but they either have been fairly specialized, or have used complex, nonstandard Eulerian finite-difference discretizations. In this paper, we use quasi-static and dynamic benchmark problems to investigate the effect of the choice of Eulerian discretization on the volume-conservation properties of a formally second-order accurate IB method. We consider both collocated and staggered-grid discretization methods. For the tests considered herein, the staggered-grid IB scheme generally yields at least a modest improvement in volume conservation when compared to cell-centered methods, and in many cases considered in this work, the spurious volume changes exhibited by the staggered-grid IB method are more than an order of magnitude smaller than those of the collocated schemes. We also compare the performance of cell-centered schemes that use either exact or approximate projection methods. We find that the volume-conservation properties of approximate projection IB methods depend strongly on the formulation of the projection method. When used with the IB method, we find that pressure-free approximate projection methods can yield extremely poor volume conservation, whereas pressure-increment approximate projection methods yield volume conservation that is nearly identical to that of a cell-centered exact projection method.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.120111.300911s

Communications in Computational Physics, Vol. 12 (2012), Iss. 2 : pp. 401–432

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    32

Keywords:   

  1. Staggered scheme for the compressible fluctuating hydrodynamics of multispecies fluid mixtures

    Srivastava, Ishan | Ladiges, Daniel R. | Nonaka, Andy J. | Garcia, Alejandro L. | Bell, John B.

    Physical Review E, Vol. 107 (2023), Iss. 1

    https://doi.org/10.1103/PhysRevE.107.015305 [Citations: 3]
  2. A hybrid immersed boundary and immersed interface method for electrohydrodynamic simulations

    Hu, Wei-Fan | Lai, Ming-Chih | Young, Yuan-Nan

    Journal of Computational Physics, Vol. 282 (2015), Iss. P.47

    https://doi.org/10.1016/j.jcp.2014.11.005 [Citations: 45]
  3. Adaptive Mesh Refinement for Immersed Boundary Methods

    Vanella, Marcos | Posa, Antonio | Balaras, Elias

    Journal of Fluids Engineering, Vol. 136 (2014), Iss. 4

    https://doi.org/10.1115/1.4026415 [Citations: 37]
  4. An operator splitting strategy for fluid–structure interaction problems with thin elastic structures in an incompressible Newtonian flow

    Laadhari, Aymen

    Applied Mathematics Letters, Vol. 81 (2018), Iss. P.35

    https://doi.org/10.1016/j.aml.2018.01.001 [Citations: 8]
  5. An immersed interface method for discrete surfaces

    Kolahdouz, Ebrahim M. | Bhalla, Amneet Pal Singh | Craven, Brent A. | Griffith, Boyce E.

    Journal of Computational Physics, Vol. 400 (2020), Iss. P.108854

    https://doi.org/10.1016/j.jcp.2019.07.052 [Citations: 31]
  6. Benchmarking the immersed finite element method for fluid–structure interaction problems

    Roy, Saswati | Heltai, Luca | Costanzo, Francesco

    Computers & Mathematics with Applications, Vol. 69 (2015), Iss. 10 P.1167

    https://doi.org/10.1016/j.camwa.2015.03.012 [Citations: 31]
  7. A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction

    Kolahdouz, E.M. | Bhalla, A.P.S. | Scotten, L.N. | Craven, B.A. | Griffith, B.E.

    Journal of Computational Physics, Vol. 443 (2021), Iss. P.110442

    https://doi.org/10.1016/j.jcp.2021.110442 [Citations: 17]
  8. A numerical method for interaction problems between fluid and membranes with arbitrary permeability for fluid

    Miyauchi, Suguru | Takeuchi, Shintaro | Kajishima, Takeo

    Journal of Computational Physics, Vol. 345 (2017), Iss. P.33

    https://doi.org/10.1016/j.jcp.2017.05.006 [Citations: 16]
  9. A partitioned scheme for fluid–composite structure interaction problems

    Bukač, M. | Čanić, S. | Muha, B.

    Journal of Computational Physics, Vol. 281 (2015), Iss. P.493

    https://doi.org/10.1016/j.jcp.2014.10.045 [Citations: 46]
  10. Splitting Methods in Communication, Imaging, Science, and Engineering

    An Operator Splitting Approach to the Solution of Fluid-Structure Interaction Problems in Hemodynamics

    Bukač, Martina | Čanić, Sunčica | Muha, Boris | Glowinski, Roland

    2016

    https://doi.org/10.1007/978-3-319-41589-5_22 [Citations: 5]
  11. Three-dimensional simulations of the cell growth and cytokinesis using the immersed boundary method

    Li, Yibao | Kim, Junseok

    Mathematical Biosciences, Vol. 271 (2016), Iss. P.118

    https://doi.org/10.1016/j.mbs.2015.11.005 [Citations: 9]
  12. Inertial coupling for point particle fluctuating hydrodynamics

    Usabiaga, F. Balboa | Pagonabarraga, I. | Delgado-Buscalioni, R.

    Journal of Computational Physics, Vol. 235 (2013), Iss. P.701

    https://doi.org/10.1016/j.jcp.2012.10.045 [Citations: 34]
  13. Simulating Biofilm Deformation and Detachment with the Immersed Boundary Method

    Sudarsan, Rangarajan | Ghosh, Sudeshna | Stockie, John M. | Eberl, Hermann J.

    Communications in Computational Physics, Vol. 19 (2016), Iss. 3 P.682

    https://doi.org/10.4208/cicp.161214.021015a [Citations: 18]
  14. A Fourier spectral immersed boundary method with exact translation invariance, improved boundary resolution, and a divergence-free velocity field

    Chen, Zhe | Peskin, Charles S.

    Journal of Computational Physics, Vol. 509 (2024), Iss. P.113048

    https://doi.org/10.1016/j.jcp.2024.113048 [Citations: 0]
  15. Reference map technique for incompressible fluid–structure interaction

    Rycroft, Chris H. | Wu, Chen-Hung | Yu, Yue | Kamrin, Ken

    Journal of Fluid Mechanics, Vol. 898 (2020), Iss.

    https://doi.org/10.1017/jfm.2020.353 [Citations: 20]
  16. Numerical Analysis of the Immersed Boundary Method for Cell-Based Simulation

    Cooper, Fergus R. | Baker, Ruth E. | Fletcher, Alexander G.

    SIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 5 P.B943

    https://doi.org/10.1137/16M1092246 [Citations: 10]
  17. A Review of Interface-Driven Adaptivity for Phase-Field Modeling of Fluid–Structure Interaction

    Rath, Biswajeet | Mao, Xiaoyu | Jaiman, Rajeev

    Journal of the Indian Institute of Science, Vol. 104 (2024), Iss. 1 P.303

    https://doi.org/10.1007/s41745-024-00422-y [Citations: 2]
  18. An interface preserving and residual-based adaptivity for phase-field modeling of fully Eulerian fluid-structure interaction

    Rath, Biswajeet | Mao, Xiaoyu | Jaiman, Rajeev K.

    Journal of Computational Physics, Vol. 488 (2023), Iss. P.112188

    https://doi.org/10.1016/j.jcp.2023.112188 [Citations: 3]
  19. A robust incompressible Navier-Stokes solver for high density ratio multiphase flows

    Nangia, Nishant | Griffith, Boyce E. | Patankar, Neelesh A. | Bhalla, Amneet Pal Singh

    Journal of Computational Physics, Vol. 390 (2019), Iss. P.548

    https://doi.org/10.1016/j.jcp.2019.03.042 [Citations: 63]
  20. Vesicle electrohydrodynamic simulations by coupling immersed boundary and immersed interface method

    Hu, Wei-Fan | Lai, Ming-Chih | Seol, Yunchang | Young, Yuan-Nan

    Journal of Computational Physics, Vol. 317 (2016), Iss. P.66

    https://doi.org/10.1016/j.jcp.2016.04.035 [Citations: 25]
  21. Non-body-fitted fluid–structure interaction: Divergence-conforming B-splines, fully-implicit dynamics, and variational formulation

    Casquero, Hugo | Zhang, Yongjie Jessica | Bona-Casas, Carles | Dalcin, Lisandro | Gomez, Hector

    Journal of Computational Physics, Vol. 374 (2018), Iss. P.625

    https://doi.org/10.1016/j.jcp.2018.07.020 [Citations: 29]
  22. An immersed peridynamics model of fluid-structure interaction accounting for material damage and failure

    Kim, Keon Ho | Bhalla, Amneet P.S. | Griffith, Boyce E.

    Journal of Computational Physics, Vol. 493 (2023), Iss. P.112466

    https://doi.org/10.1016/j.jcp.2023.112466 [Citations: 3]
  23. High-order fluid solver based on a combined compact integrated RBF approximation and its fluid structure interaction applications

    Tien, C.M.T. | Ngo-Cong, D. | Mai-Duy, N. | Tran, C.-D. | Tran-Cong, T.

    Computers & Fluids, Vol. 131 (2016), Iss. P.151

    https://doi.org/10.1016/j.compfluid.2016.03.021 [Citations: 2]
  24. Implicit finite element methodology for the numerical modeling of incompressible two-fluid flows with moving hyperelastic interface

    Laadhari, Aymen

    Applied Mathematics and Computation, Vol. 333 (2018), Iss. P.376

    https://doi.org/10.1016/j.amc.2018.03.074 [Citations: 6]
  25. Accuracy improvement for immersed boundary method using Lagrangian velocity interpolation

    Amiri, Farhad A. | Le, Guigao | Chen, Qing | Zhang, Junfeng

    Journal of Computational Physics, Vol. 423 (2020), Iss. P.109800

    https://doi.org/10.1016/j.jcp.2020.109800 [Citations: 7]
  26. Immersed boundary simulations of flows driven by moving thin membranes

    Lauber, Marin | Weymouth, Gabriel D. | Limbert, Georges

    Journal of Computational Physics, Vol. 457 (2022), Iss. P.111076

    https://doi.org/10.1016/j.jcp.2022.111076 [Citations: 9]
  27. An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver

    Wiens, Jeffrey K. | Stockie, John M.

    Journal of Computational Physics, Vol. 281 (2015), Iss. P.917

    https://doi.org/10.1016/j.jcp.2014.10.058 [Citations: 17]
  28. Geometric multigrid for an implicit-time immersed boundary method

    Guy, Robert D. | Philip, Bobby | Griffith, Boyce E.

    Advances in Computational Mathematics, Vol. 41 (2015), Iss. 3 P.635

    https://doi.org/10.1007/s10444-014-9380-1 [Citations: 8]
  29. An Interface-Driven Adaptive Variational Procedure for Fully Eulerian Fluid-Structure Interaction Via Phase-Field Modeling

    Rath, Biswajeet | Mao, Xiaoyu | Jaiman, Rajeev Kumar

    SSRN Electronic Journal , Vol. (2022), Iss.

    https://doi.org/10.2139/ssrn.4047634 [Citations: 0]
  30. A numerical study of the benefits of driving jellyfish bells at their natural frequency

    Hoover, Alexander | Miller, Laura

    Journal of Theoretical Biology, Vol. 374 (2015), Iss. P.13

    https://doi.org/10.1016/j.jtbi.2015.03.016 [Citations: 41]
  31. Modeling deformable capsules in viscous flow using immersed boundary method

    Tran, S. B. Q. | Le, Q. T. | Leong, F. Y. | Le, D. V.

    Physics of Fluids, Vol. 32 (2020), Iss. 9

    https://doi.org/10.1063/5.0016302 [Citations: 14]
  32. Neuromechanical wave resonance in jellyfish swimming

    Hoover, Alexander P. | Xu, Nicole W. | Gemmell, Brad J. | Colin, Sean P. | Costello, John H. | Dabiri, John O. | Miller, Laura A.

    Proceedings of the National Academy of Sciences, Vol. 118 (2021), Iss. 11

    https://doi.org/10.1073/pnas.2020025118 [Citations: 20]
  33. On the Lagrangian-Eulerian coupling in the immersed finite element/difference method

    Lee, Jae H. | Griffith, Boyce E.

    Journal of Computational Physics, Vol. 457 (2022), Iss. P.111042

    https://doi.org/10.1016/j.jcp.2022.111042 [Citations: 10]
  34. Quasi‐static image‐based immersed boundary‐finite element model of left ventricle under diastolic loading

    Gao, Hao | Wang, Huiming | Berry, Colin | Luo, Xiaoyu | Griffith, Boyce E.

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 30 (2014), Iss. 11 P.1199

    https://doi.org/10.1002/cnm.2652 [Citations: 51]
  35. Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity

    Vadala-Roth, Ben | Acharya, Shashank | Patankar, Neelesh A. | Rossi, Simone | Griffith, Boyce E.

    Computer Methods in Applied Mechanics and Engineering, Vol. 365 (2020), Iss. P.112978

    https://doi.org/10.1016/j.cma.2020.112978 [Citations: 20]
  36. An immersed interface-lattice Boltzmann method for fluid-structure interaction

    Qin, Jianhua | Kolahdouz, Ebrahim M. | Griffith, Boyce E.

    Journal of Computational Physics, Vol. 428 (2021), Iss. P.109807

    https://doi.org/10.1016/j.jcp.2020.109807 [Citations: 17]
  37. Variational implementation of immersed finite element methods

    Heltai, Luca | Costanzo, Francesco

    Computer Methods in Applied Mechanics and Engineering, Vol. 229-232 (2012), Iss. P.110

    https://doi.org/10.1016/j.cma.2012.04.001 [Citations: 30]
  38. Fully Eulerian finite element approximation of a fluid‐structure interaction problem in cardiac cells

    Laadhari, A. | Ruiz‐Baier, R. | Quarteroni, A.

    International Journal for Numerical Methods in Engineering, Vol. 96 (2013), Iss. 11 P.712

    https://doi.org/10.1002/nme.4582 [Citations: 20]
  39. Numerical methods for immersed FSI with thin-walled structures

    Boilevin-Kayl, Ludovic | Fernández, Miguel A. | Gerbeau, Jean-Frédéric

    Computers & Fluids, Vol. 179 (2019), Iss. P.744

    https://doi.org/10.1016/j.compfluid.2018.05.024 [Citations: 15]
  40. Hybrid finite difference/finite element immersed boundary method

    Griffith, Boyce E | Luo, Xiaoyu

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 33 (2017), Iss. 12

    https://doi.org/10.1002/cnm.2888 [Citations: 101]
  41. An immersed boundary energy-based method for incompressible viscoelasticity

    Devendran, Dharshi | Peskin, Charles S.

    Journal of Computational Physics, Vol. 231 (2012), Iss. 14 P.4613

    https://doi.org/10.1016/j.jcp.2012.02.020 [Citations: 36]
  42. Numerical method for modeling photosynthesis of algae on pulsing soft corals

    Santiago, Matea | Mitchell, Kevin A. | Khatri, Shilpa

    Physical Review Fluids, Vol. 7 (2022), Iss. 3

    https://doi.org/10.1103/PhysRevFluids.7.033102 [Citations: 2]
  43. Fluid-Structure Interaction and Biomedical Applications

    Fluid–Structure Interaction in Hemodynamics: Modeling, Analysis, and Numerical Simulation

    Čanić, Sunčica | Muha, Boris | Bukač, Martina

    2014

    https://doi.org/10.1007/978-3-0348-0822-4_2 [Citations: 8]
  44. An immersed boundary method for rigid bodies

    Kallemov, Bakytzhan | Bhalla, Amneet | Griffith, Boyce | Donev, Aleksandar

    Communications in Applied Mathematics and Computational Science, Vol. 11 (2016), Iss. 1 P.79

    https://doi.org/10.2140/camcos.2016.11.79 [Citations: 72]
  45. A Monolithic Approach to Fluid–Composite Structure Interaction

    Forti, Davide | Bukac, Martina | Quaini, Annalisa | Canic, Suncica | Deparis, Simone

    Journal of Scientific Computing, Vol. 72 (2017), Iss. 1 P.396

    https://doi.org/10.1007/s10915-017-0363-5 [Citations: 18]
  46. Study of drafting, kissing and tumbling process of two particles with different sizes using immersed boundary method in a confined medium

    Ghosh, Sudeshna | Kumar, Manish

    Mathematics and Computers in Simulation, Vol. 177 (2020), Iss. P.341

    https://doi.org/10.1016/j.matcom.2020.04.029 [Citations: 11]
  47. A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction

    Kolahdouz, Ebrahim M. | Wells, David R. | Rossi, Simone | Aycock, Kenneth I. | Craven, Brent A. | Griffith, Boyce E.

    Journal of Computational Physics, Vol. 488 (2023), Iss. P.112174

    https://doi.org/10.1016/j.jcp.2023.112174 [Citations: 3]
  48. An unfitted mesh semi‐implicit coupling scheme for fluid‐structure interaction with immersed solids

    Fernández, Miguel A. | Gerosa, Fannie M.

    International Journal for Numerical Methods in Engineering, Vol. 122 (2021), Iss. 19 P.5384

    https://doi.org/10.1002/nme.6449 [Citations: 6]
  49. An immersed-boundary/isogeometric method for fluid–structure interaction involving thin shells

    Nitti, Alessandro | Kiendl, Josef | Reali, Alessandro | de Tullio, Marco D.

    Computer Methods in Applied Mechanics and Engineering, Vol. 364 (2020), Iss. P.112977

    https://doi.org/10.1016/j.cma.2020.112977 [Citations: 35]
  50. A scalable method to model large suspensions of colloidal phoretic particles with arbitrary shapes

    Delmotte, Blaise | Usabiaga, Florencio Balboa

    Journal of Computational Physics, Vol. 518 (2024), Iss. P.113321

    https://doi.org/10.1016/j.jcp.2024.113321 [Citations: 0]
  51. An Immersed Boundary method with divergence-free velocity interpolation and force spreading

    Bao, Yuanxun | Donev, Aleksandar | Griffith, Boyce E. | McQueen, David M. | Peskin, Charles S.

    Journal of Computational Physics, Vol. 347 (2017), Iss. P.183

    https://doi.org/10.1016/j.jcp.2017.06.041 [Citations: 41]
  52. Staggered Schemes for Fluctuating Hydrodynamics

    Balboa, Florencio | Bell, John B. | Delgado-Buscalioni, Rafael | Donev, Aleksandar | Fai, Thomas G. | Griffith, Boyce E. | Peskin, Charles S.

    Multiscale Modeling & Simulation, Vol. 10 (2012), Iss. 4 P.1369

    https://doi.org/10.1137/120864520 [Citations: 98]
  53. An effective preconditioning strategy for volume penalized incompressible/low Mach multiphase flow solvers

    Thirumalaisamy, Ramakrishnan | Khedkar, Kaustubh | Ghysels, Pieter | Bhalla, Amneet Pal Singh

    Journal of Computational Physics, Vol. 490 (2023), Iss. P.112325

    https://doi.org/10.1016/j.jcp.2023.112325 [Citations: 4]
  54. Influence of the vessel wall geometry on the wall-induced migration of red blood cells

    Zhang, Ying | Fai, Thomas G. | Beard, Daniel A

    PLOS Computational Biology, Vol. 19 (2023), Iss. 7 P.e1011241

    https://doi.org/10.1371/journal.pcbi.1011241 [Citations: 5]
  55. Lubricated immersed boundary method in two dimensions

    Fai, Thomas G. | Rycroft, Chris H.

    Journal of Computational Physics, Vol. 356 (2018), Iss. P.319

    https://doi.org/10.1016/j.jcp.2017.11.029 [Citations: 10]
  56. A Forced Damped Oscillation Framework for Undulatory Swimming Provides New Insights into How Propulsion Arises in Active and Passive Swimming

    Bhalla, Amneet Pal Singh | Griffith, Boyce E. | Patankar, Neelesh A. | Goldman, Daniel

    PLoS Computational Biology, Vol. 9 (2013), Iss. 6 P.e1003097

    https://doi.org/10.1371/journal.pcbi.1003097 [Citations: 52]
  57. Eulerian weakly compressible smoothed particle hydrodynamics (SPH) with the immersed boundary method for thin slender bodies

    Nasar, A.M.A. | Rogers, B.D. | Revell, A. | Stansby, P.K. | Lind, S.J.

    Journal of Fluids and Structures, Vol. 84 (2019), Iss. P.263

    https://doi.org/10.1016/j.jfluidstructs.2018.11.005 [Citations: 28]
  58. Patient–Specific Immersed Finite Element–Difference Model of Transcatheter Aortic Valve Replacement

    Brown, Jordan A. | Lee, Jae H. | Smith, Margaret Anne | Wells, David R. | Barrett, Aaron | Puelz, Charles | Vavalle, John P. | Griffith, Boyce E.

    Annals of Biomedical Engineering, Vol. 51 (2023), Iss. 1 P.103

    https://doi.org/10.1007/s10439-022-03047-3 [Citations: 13]
  59. A modular, operator‐splitting scheme for fluid–structure interaction problems with thick structures

    Bukač, M. | Čanić, S. | Glowinski, R. | Muha, B. | Quaini, A.

    International Journal for Numerical Methods in Fluids, Vol. 74 (2014), Iss. 8 P.577

    https://doi.org/10.1002/fld.3863 [Citations: 34]
  60. Image-based fluid–structure interaction model of the human mitral valve

    Ma, Xingshuang | Gao, Hao | Griffith, Boyce E. | Berry, Colin | Luo, Xiaoyu

    Computers & Fluids, Vol. 71 (2013), Iss. P.417

    https://doi.org/10.1016/j.compfluid.2012.10.025 [Citations: 46]
  61. Image-based immersed boundary model of the aortic root

    Hasan, Ali | Kolahdouz, Ebrahim M. | Enquobahrie, Andinet | Caranasos, Thomas G. | Vavalle, John P. | Griffith, Boyce E.

    Medical Engineering & Physics, Vol. 47 (2017), Iss. P.72

    https://doi.org/10.1016/j.medengphy.2017.05.007 [Citations: 19]
  62. The divergence-conforming immersed boundary method: Application to vesicle and capsule dynamics

    Casquero, Hugo | Bona-Casas, Carles | Toshniwal, Deepesh | Hughes, Thomas J.R. | Gomez, Hector | Zhang, Yongjie Jessica

    Journal of Computational Physics, Vol. 425 (2021), Iss. P.109872

    https://doi.org/10.1016/j.jcp.2020.109872 [Citations: 27]