Numerical Methods for Fluid-Structure Interaction - A Review

Year:    2012

Communications in Computational Physics, Vol. 12 (2012), Iss. 2 : pp. 337–377

Abstract

The interactions between incompressible fluid flows and immersed structures are nonlinear multi-physics phenomena that have applications to a wide range of scientific and engineering disciplines. In this article, we review representative numerical methods based on conforming and non-conforming meshes that are currently available for computing fluid-structure interaction problems, with an emphasis on some of the recent developments in the field. A goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study in fluid-structure interactions.

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.291210.290411s

Communications in Computational Physics, Vol. 12 (2012), Iss. 2 : pp. 337–377

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    41

Keywords:   

  1. A reduced mesh movement method based on pseudo elastic solid for fluid–structure interaction

    Zhong, Jize | Xu, Zili

    Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 232 (2018), Iss. 6 P.973

    https://doi.org/10.1177/0954406217700177 [Citations: 2]
  2. Simulation of a pulsatile total artificial heart: Development of a partitioned Fluid Structure Interaction model

    Sonntag, Simon J. | Kaufmann, Tim A.S. | Büsen, Martin R. | Laumen, Marco | Linde, Torsten | Schmitz-Rode, Thomas | Steinseifer, Ulrich

    Journal of Fluids and Structures, Vol. 38 (2013), Iss. P.187

    https://doi.org/10.1016/j.jfluidstructs.2012.11.011 [Citations: 29]
  3. Explicit strategies for incompressible fluid‐structure interaction problems: Nitsche type mortaring versus Robin–Robin coupling

    Burman, Erik | Fernández, Miguel A.

    International Journal for Numerical Methods in Engineering, Vol. 97 (2014), Iss. 10 P.739

    https://doi.org/10.1002/nme.4607 [Citations: 46]
  4. Fluid structure interaction by means of variational multiscale reduced order models

    Tello, Alexis | Codina, Ramon | Baiges, Joan

    International Journal for Numerical Methods in Engineering, Vol. 121 (2020), Iss. 12 P.2601

    https://doi.org/10.1002/nme.6321 [Citations: 18]
  5. Weighted Average Continuity Approach and Moment Correction: New Strategies for Non-consistent Mesh Projection in Structural Mechanics

    Coniglio, Simone | Gogu, Christian | Morlier, Joseph

    Archives of Computational Methods in Engineering, Vol. 26 (2019), Iss. 5 P.1415

    https://doi.org/10.1007/s11831-018-9285-0 [Citations: 3]
  6. A monolithic, mortar‐based interface coupling and solution scheme for finite element simulations of lithium‐ion cells

    Fang, Rui | Farah, Philipp | Popp, Alexander | Wall, Wolfgang A.

    International Journal for Numerical Methods in Engineering, Vol. 114 (2018), Iss. 13 P.1411

    https://doi.org/10.1002/nme.5792 [Citations: 13]
  7. Engineering Design Exploration Utilizing Locally-Optimized Covariance Kriging

    Clark, Daniel L. | Bae, Ha-rok | Gobal, Koorosh | Penmetsa, Ravi

    18th AIAA Non-Deterministic Approaches Conference, (2016),

    https://doi.org/10.2514/6.2016-0428 [Citations: 4]
  8. Development of a numerical model for fluid-structure interaction analysis of flow through and around an aquaculture net cage

    Chen, Hao | Christensen, Erik Damgaard

    Ocean Engineering, Vol. 142 (2017), Iss. P.597

    https://doi.org/10.1016/j.oceaneng.2017.07.033 [Citations: 69]
  9. Numerical modeling of highly nonlinear phenomena in heterogeneous materials and domains

    Shakoor, Modesar

    2023

    https://doi.org/10.1016/bs.aams.2023.09.003 [Citations: 0]
  10. Multiphysics Coupling Model for Computing Pier Scour upon Simulation and Experiment

    Hong, Yao-Ming | Kan, Yao-Chiang | Zeng, Jian-Rong | Lin, Hsueh-Chun

    Journal of Computing in Civil Engineering, Vol. 32 (2018), Iss. 1

    https://doi.org/10.1061/(ASCE)CP.1943-5487.0000716 [Citations: 2]
  11. Dependence of the Piezoelectric Micropump Operating Mode on Its Geometry

    Nasibullayev, I Sh | Nasibullaeva, E Sh | Darintsev, O V

    Journal of Physics: Conference Series, Vol. 2096 (2021), Iss. 1 P.012081

    https://doi.org/10.1088/1742-6596/2096/1/012081 [Citations: 0]
  12. Encyclopedia of Maritime and Offshore Engineering

    Fluid–Structure Interactions in Marine Engineering

    Ma, Qingwei | Sriram, Venkatachalam | Yan, Shiqiang

    2017

    https://doi.org/10.1002/9781118476406.emoe134 [Citations: 1]
  13. Combined Micro-Structural Effects of Linearly Increasing Reynolds Number and Mean Inflow Velocity on Flow Fields with Mesh Independence Analysis in Non-Classical Framework

    Hajano, Nazim Hussain | Khan, Muhammad Sabeel | Liu, Lisheng | Kaloi, Mumtaz Ali | Mei, Hai

    Mathematics, Vol. 11 (2023), Iss. 9 P.2074

    https://doi.org/10.3390/math11092074 [Citations: 0]
  14. Parallel computing component model for interdisciplinary multiphysicscoupling

    MO, Zeyao | YANG, Zhang

    SCIENTIA SINICA Informationis, Vol. 53 (2023), Iss. 8 P.1560

    https://doi.org/10.1360/SSI-2023-0108 [Citations: 0]
  15. Aerodynamic and static aeroelastic computations of a slender rocket with all-movable canard surface

    Dongyang, Chen | Abbas, Laith K | Xiaoting, Rui | Guoping, Wang

    Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 232 (2018), Iss. 6 P.1103

    https://doi.org/10.1177/0954410017705901 [Citations: 13]
  16. Effect of actuation method on hydrodynamics of elastic plates oscillating at resonance

    Demirer, Ersan | Wang, Yu-Cheng | Erturk, Alper | Alexeev, Alexander

    Journal of Fluid Mechanics, Vol. 910 (2021), Iss.

    https://doi.org/10.1017/jfm.2020.915 [Citations: 14]
  17. A review of advances in modeling hydrodynamics and hydroelasticity for very large floating structures

    Jiang, Changqing | Xu, Peng | Bai, Xinglan | Zhao, Zhichao | el Moctar, Ould | Zhang, Guiyong

    Ocean Engineering, Vol. 285 (2023), Iss. P.115319

    https://doi.org/10.1016/j.oceaneng.2023.115319 [Citations: 13]
  18. Numerical modeling of strongly coupled microscale multiphase flow and solid deformation

    Fagbemi, Samuel | Tahmasebi, Pejman | Piri, Mohammad

    International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 44 (2020), Iss. 2 P.161

    https://doi.org/10.1002/nag.2999 [Citations: 12]
  19. Computational structural dynamics general solution procedure using finite volumes

    Graff, Joseph S | Davis, Roger L | Clark, John P

    Journal of Algorithms & Computational Technology, Vol. 16 (2022), Iss.

    https://doi.org/10.1177/17483026221084030 [Citations: 0]
  20. Fluid-solid coupled full-waveform inversion in the curvilinear coordinates for ocean-bottom cable data

    Qu, Yingming | Guan, Zhe | Li, Jinli | Li, Zhenchun

    GEOPHYSICS, Vol. 85 (2020), Iss. 3 P.R113

    https://doi.org/10.1190/geo2018-0743.1 [Citations: 20]
  21. Boundary SPH for Robust Particle–Mesh Interaction in Three Dimensions

    Kim, Ryan | Torrens, Paul M.

    Algorithms, Vol. 17 (2024), Iss. 5 P.218

    https://doi.org/10.3390/a17050218 [Citations: 0]
  22. Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions

    Liu, Moubin | Zhang, Zhilang

    Science China Physics, Mechanics & Astronomy, Vol. 62 (2019), Iss. 8

    https://doi.org/10.1007/s11433-018-9357-0 [Citations: 167]
  23. The Causes of Bolt Breakage During the Tightening of Impellers in Water Jet Propulsion Systems

    Jung, Sang-Jin | Il, Oh Shini | Hur, Jang-Wook

    Journal of the Korean Society of Manufacturing Process Engineers, Vol. 18 (2019), Iss. 10 P.48

    https://doi.org/10.14775/ksmpe.2019.18.10.048 [Citations: 4]
  24. Fluid Structure Interaction on Paravalvular Leakage of Transcatheter Aortic Valve Implantation Related to Aortic Stenosis: A Patient-Specific Case

    Basri, Adi A. | Zuber, Mohammad | Basri, Ernnie I. | Zakaria, Muhammad S. | Aziz, Ahmad F. A. | Tamagawa, Masaaki | Ahmad, Kamarul A.

    Computational and Mathematical Methods in Medicine, Vol. 2020 (2020), Iss. P.1

    https://doi.org/10.1155/2020/9163085 [Citations: 18]
  25. Fluid‐Structure Interactions and Uncertainties

    Bibliography

    2017

    https://doi.org/10.1002/9781119388937.biblio [Citations: 0]
  26. The Method of Manufactured Solutions to Construct Flow Fields Across An Interface

    Xu, Sheng

    International Journal of Computational Fluid Dynamics, Vol. (2024), Iss. P.1

    https://doi.org/10.1080/10618562.2024.2403551 [Citations: 0]
  27. Topology optimization of structures subject to non-Newtonian fluid–structure interaction loads using integer linear programming

    Ranjbarzadeh, S. | Picelli, R. | Gioria, R. | Silva, E.C.N.

    Finite Elements in Analysis and Design, Vol. 202 (2022), Iss. P.103690

    https://doi.org/10.1016/j.finel.2021.103690 [Citations: 2]
  28. Fluid-structure interaction simulations for a temperature-sensitive functionally graded hydrogel-based micro-channel

    Ghasemkhani, Amir | Mazaheri, Hashem | Amiri, Arya

    Journal of Intelligent Material Systems and Structures, Vol. 32 (2021), Iss. 6 P.661

    https://doi.org/10.1177/1045389X20963170 [Citations: 9]
  29. A monolithic geometric multigrid solver for fluid-structure interactions in ALE formulation

    Richter, Thomas

    International Journal for Numerical Methods in Engineering, Vol. 104 (2015), Iss. 5 P.372

    https://doi.org/10.1002/nme.4943 [Citations: 38]
  30. A modified fractional step method for fluid–structure interaction problems

    Ryzhakov, P.

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol. 33 (2017), Iss. 1-2 P.58

    https://doi.org/10.1016/j.rimni.2015.09.002 [Citations: 13]
  31. COMPARATIVE ANALYSIS OF NUMERICAL AND ANALYTICAL METHODS FOR MODELING THE «FLOW TUBE - LIQUID» SYSTEM IN CORIOLIS FLOWMETERS

    Gudkova, E.A | Tarantseva, K.R | Mikheev, M.Y

    XXI Century: Resumes of the Past and Challenges of the Present plus, Vol. 11 (2022), Iss. 59

    https://doi.org/10.46548/21vek-2022-1159-0009 [Citations: 1]
  32. Fluid‐structure interaction in two‐phase flow using a discrete forcing method

    Benguigui, W. | Laviéville, J. | Merigoux, N.

    International Journal for Numerical Methods in Fluids, Vol. 91 (2019), Iss. 5 P.247

    https://doi.org/10.1002/fld.4753 [Citations: 7]
  33. A Non-Equilibrium Interpolation Scheme for IB-LBM Optimized by Approximate Force

    Liu, Bowen | Shi, Weiping

    Axioms, Vol. 12 (2023), Iss. 3 P.298

    https://doi.org/10.3390/axioms12030298 [Citations: 1]
  34. Numerical study on vortex induced vibration of a flexible plate behind square cylinder with various flow velocities

    Hu, Shi-liang | Lu, Chuan-jing | He, You-sheng

    Journal of Shanghai Jiaotong University (Science), Vol. 19 (2014), Iss. 4 P.488

    https://doi.org/10.1007/s12204-014-1529-z [Citations: 2]
  35. Strongly coupled dynamics of fluids and rigid-body systems with the immersed boundary projection method

    Wang, Chengjie | Eldredge, Jeff D.

    Journal of Computational Physics, Vol. 295 (2015), Iss. P.87

    https://doi.org/10.1016/j.jcp.2015.04.005 [Citations: 35]
  36. Recent developments in the study of insect flight

    Hedrick, Tyson L. | Combes, Stacey A. | Miller, Laura A.

    Canadian Journal of Zoology, Vol. 93 (2015), Iss. 12 P.925

    https://doi.org/10.1139/cjz-2013-0196 [Citations: 37]
  37. Unified Discrete Multisymplectic Lagrangian Formulation for Hyperelastic Solids and Barotropic Fluids

    Demoures, François | Gay-Balmaz, François

    Journal of Nonlinear Science, Vol. 32 (2022), Iss. 6

    https://doi.org/10.1007/s00332-022-09849-y [Citations: 3]
  38. A Brief Review on Aerodynamic Performance of Wingtip Slots and Research Prospect

    Liu, Dan | Song, Bifeng | Yang, Wenqing | Yang, Xiaojun | Xue, Dong | Lang, Xinyu

    Journal of Bionic Engineering, Vol. 18 (2021), Iss. 6 P.1255

    https://doi.org/10.1007/s42235-021-00116-6 [Citations: 16]
  39. Some Numerical Approaches to Solve Fluid Structure Interaction Problems in Blood Flow

    Tang, Aik Ying | Amin, Norsarahaida

    Abstract and Applied Analysis, Vol. 2014 (2014), Iss. P.1

    https://doi.org/10.1155/2014/549189 [Citations: 0]
  40. An edge‐based smoothed finite element framework for partitioned simulation of vortex‐induced vibration problems

    He, Tao | Yao, Wen‐Juan | Zhang, Xu‐Yan

    International Journal for Numerical Methods in Fluids, Vol. 94 (2022), Iss. 11 P.1863

    https://doi.org/10.1002/fld.5130 [Citations: 3]
  41. A vorticity based approach to handle the fluid-structure interaction problems

    Farahbakhsh, Iman | Ghassemi, Hassan | Sabetghadam, Fereidoun

    Fluid Dynamics Research, Vol. 48 (2016), Iss. 1 P.015509

    https://doi.org/10.1088/0169-5983/48/1/015509 [Citations: 6]
  42. The Impact of Residences and Roads on Wind Erosion in a Temperate Grassland Ecosystem: A Spatially Oriented Perspective

    Zhou, Zhuoli | Zhang, Zhuodong | Zhang, Wenbo | Luo, Jianyong | Zhang, Keli | Cao, Zihao | Wang, Zhiqiang

    International Journal of Environmental Research and Public Health, Vol. 20 (2022), Iss. 1 P.198

    https://doi.org/10.3390/ijerph20010198 [Citations: 1]
  43. Radial Basis Functions Vector Fields Interpolation for Complex Fluid Structure Interaction Problems

    Groth, Corrado | Porziani, Stefano | Biancolini, Marco Evangelos

    Fluids, Vol. 6 (2021), Iss. 9 P.314

    https://doi.org/10.3390/fluids6090314 [Citations: 8]
  44. Dynamic response modeling of high-speed planing craft with enforced acceleration

    Hou, Gene | Johnson, Brian | Degroff, Jonathan | Trenor, Steven | Michaeli, Jennifer

    Ocean Engineering, Vol. 192 (2019), Iss. P.106493

    https://doi.org/10.1016/j.oceaneng.2019.106493 [Citations: 6]
  45. Recent Advances in Computational Mechanics and Simulations

    Probing into the Efficacy of Discrete Forcing Immersed Boundary Method in Capturing the Aperiodic Transition in the Wake of a Flapping Airfoil

    Majumdar, Dipanjan | Bose, Chandan | Sarkar, Sunetra

    2021

    https://doi.org/10.1007/978-981-15-8315-5_24 [Citations: 0]
  46. Topology optimization of fluid‐structure interaction problems with total stress equilibrium

    Abdelhamid, Mohamed | Czekanski, Aleksander

    International Journal for Numerical Methods in Engineering, Vol. 125 (2024), Iss. 2

    https://doi.org/10.1002/nme.7368 [Citations: 1]
  47. Three dimensional auto meshing flexibility CAE analysis for microchip encapsulation

    Chen, Lung-Chi | Hsu, Chih-Chung | Hsieh, Dar-Der | Chang, Rong-Yeu

    2014 9th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), (2014), P.134

    https://doi.org/10.1109/IMPACT.2014.7048432 [Citations: 0]
  48. A smoothed particle element method (SPEM) for modeling fluid–structure interaction problems with large fluid deformations

    Zhang, Z.L. | Long, T. | Chang, J.Z. | Liu, M.B.

    Computer Methods in Applied Mechanics and Engineering, Vol. 356 (2019), Iss. P.261

    https://doi.org/10.1016/j.cma.2019.07.024 [Citations: 60]
  49. Analysis of aeroelastic vibration of rectangular cylinder in a uniform flow by a Large Eddy Simulation formulated in a non-inertial moving coordinate system

    Noda, Hiroshi | Nakayama, Akihiko

    Journal of Wind Engineering and Industrial Aerodynamics, Vol. 166 (2017), Iss. P.29

    https://doi.org/10.1016/j.jweia.2017.03.011 [Citations: 3]
  50. A fully Lagrangian method for fluid–structure interaction problems with deformable floating structure

    Sun, Yijie | Xi, Guang | Sun, Zhongguo

    Journal of Fluids and Structures, Vol. 90 (2019), Iss. P.379

    https://doi.org/10.1016/j.jfluidstructs.2019.07.005 [Citations: 21]
  51. Fluid Structure Interaction Analysis of Liquid Tanks by the Coupled SPH - FEM Method with Experimental Verification

    Kusić, Marina Sunara | Radnić, Jure | Grgić, Nikola | Harapin, Alen

    Defect and Diffusion Forum, Vol. 391 (2019), Iss. P.152

    https://doi.org/10.4028/www.scientific.net/DDF.391.152 [Citations: 1]
  52. Parallel partitioned coupling analysis system for large-scale incompressible viscous fluid–structure interaction problems

    Yamada, Tomonori | Hong, Giwon | Kataoka, Shunji | Yoshimura, Shinobu

    Computers & Fluids, Vol. 141 (2016), Iss. P.259

    https://doi.org/10.1016/j.compfluid.2016.03.030 [Citations: 11]
  53. An arbitrary Lagrangian–Eulerian gradient smoothing method (GSM/ALE) for interaction of fluid and a moving rigid body

    Wang, S. | Khoo, B.C. | Liu, G.R. | Xu, G.X.

    Computers & Fluids, Vol. 71 (2013), Iss. P.327

    https://doi.org/10.1016/j.compfluid.2012.10.028 [Citations: 29]
  54. An immersed boundary method with y+‐adaptive wall function for smooth wall shear

    Xu, Yuncheng | Liu, Xiaofeng

    International Journal for Numerical Methods in Fluids, Vol. 93 (2021), Iss. 6 P.1929

    https://doi.org/10.1002/fld.4960 [Citations: 9]
  55. The Challenge and Progress in Macro- and Micro-modeling and Simulation of Squeeze Casting Process

    Ma, Jiale | Han, Zhiqiang | Sachdev, Anil K. | Luo, Alan A.

    Metallurgical and Materials Transactions A, Vol. 55 (2024), Iss. 12 P.4809

    https://doi.org/10.1007/s11661-024-07557-8 [Citations: 0]
  56. Fully Coupled Fluid–Structure Interaction with Heat Transfer Effects in an Adaptive NACA Airfoil

    Caccavale, Paolo | Mele, Benedetto | Brandizzi, Marco | Ruocco, Gianpaolo

    Fluids, Vol. 8 (2023), Iss. 2 P.39

    https://doi.org/10.3390/fluids8020039 [Citations: 3]
  57. An unconditionally stable semi-implicit FSI finite element method

    Lozovskiy, Alexander | Olshanskii, Maxim A. | Salamatova, Victoria | Vassilevski, Yuri V.

    Computer Methods in Applied Mechanics and Engineering, Vol. 297 (2015), Iss. P.437

    https://doi.org/10.1016/j.cma.2015.09.014 [Citations: 8]
  58. A highly extensible smoothed particle hydrodynamics with meshless fluid-end general interpolation method based on precise code interaction coupling environment for fluid–structure interaction surface coupling

    Long, Sifan | Guo, Xiaowei | Fan, Xiaokang | Zhao, Ran | Zhang, Sen | Liu, Yi | Yuan, Lihuan | Yang, Canqun

    Physics of Fluids, Vol. 36 (2024), Iss. 9

    https://doi.org/10.1063/5.0226924 [Citations: 0]
  59. Computational Science – ICCS 2022

    Parallel Fluid-Structure Interaction Simulation

    Chen, Meng-Huo

    2022

    https://doi.org/10.1007/978-3-031-08760-8_25 [Citations: 0]
  60. Comparison of computational fluid dynamics and fluid structure interaction models for the performance prediction of tidal current turbines

    Badshah, Mujahid | Badshah, Saeed | Jan, Sakhi

    Journal of Ocean Engineering and Science, Vol. 5 (2020), Iss. 2 P.164

    https://doi.org/10.1016/j.joes.2019.10.001 [Citations: 24]
  61. Cylinder-lamina system fluid–structure interaction problem solved with an original OpenFOAM code

    Stefanini, C. | Giorgetti, F. | Mercuri, A. | Facci, A. | Fanelli, P.

    Journal of Computational Science, Vol. 54 (2021), Iss. P.101420

    https://doi.org/10.1016/j.jocs.2021.101420 [Citations: 1]
  62. A Cartesian Immersed Boundary Method Based on 1D Flow Reconstructions for High-Fidelity Simulations of Incompressible Turbulent Flows Around Moving Objects

    Giannenas, Athanasios E. | Bempedelis, Nikolaos | Schuch, Felipe N. | Laizet, Sylvain

    Flow, Turbulence and Combustion, Vol. 109 (2022), Iss. 4 P.931

    https://doi.org/10.1007/s10494-022-00364-4 [Citations: 3]
  63. Force–moment line element method for Stokes flow around a slender body

    Jiang, H. | Wu, Y.T. | Yang, B. | Zhao, Y.-P.

    Engineering Analysis with Boundary Elements, Vol. 44 (2014), Iss. P.120

    https://doi.org/10.1016/j.enganabound.2014.02.005 [Citations: 2]
  64. Adaptive High-Order Fluid-Structure Interaction Simulations with Reduced Mesh-Motion Errors

    Ojha, Vivek | Fidkowski, Krzysztof J. | Cesnik, Carlos E. S.

    AIAA Journal, Vol. 59 (2021), Iss. 6 P.2084

    https://doi.org/10.2514/1.J059730 [Citations: 9]
  65. CFD Applications in Offshore Engineering

    Darvishzadeh, Tohid | Sari, Ali

    All Days, (2015),

    https://doi.org/10.4043/25930-MS [Citations: 0]
  66. Generalized Robin–Neumann explicit coupling schemes for incompressible fluid‐structure interaction: Stability analysis and numerics

    Fernández, Miguel A. | Mullaert, Jimmy | Vidrascu, Marina

    International Journal for Numerical Methods in Engineering, Vol. 101 (2015), Iss. 3 P.199

    https://doi.org/10.1002/nme.4785 [Citations: 29]
  67. Dynamic response analysis of polyoxymethylene hydrofoils using the hybrid pitch mode FSI method

    Jang, W-S | Choi, W-S | Hong, S-Y | Song, J-H | Kwon, H-W

    IOP Conference Series: Materials Science and Engineering, Vol. 634 (2019), Iss. 1 P.012025

    https://doi.org/10.1088/1757-899X/634/1/012025 [Citations: 0]
  68. Computing Fluid-Structure Interaction by the Partitioned Approach with Direct Forcing

    Timalsina, Asim | Hou, Gene | Wang, Jin

    Communications in Computational Physics, Vol. 21 (2017), Iss. 1 P.182

    https://doi.org/10.4208/cicp.080815.090516a [Citations: 0]
  69. Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018

    Practical Contributions on the Fictitious Domain Method for a Fluid–Structure Interaction Problem

    Delay, Guillaume | Fournié, Michel

    2020

    https://doi.org/10.1007/978-3-030-41800-7_3 [Citations: 0]
  70. Advances in Applied Mechanical Engineering

    Numerical Analysis of Fluid–Structure Interaction of Blood Flow Through a Flexible Tube with 90-Degree Bend Using OpenFOAM

    Jaiswal, Rishabh N. | Gohil, Trushar B.

    2020

    https://doi.org/10.1007/978-981-15-1201-8_35 [Citations: 0]
  71. Multifidelity approach to the numerical aeroelastic simulation of flexible membrane wings

    Torregrosa, A.J. | Gil, A. | Quintero, P. | Cremades, A.

    Aerospace Science and Technology, Vol. 155 (2024), Iss. P.109673

    https://doi.org/10.1016/j.ast.2024.109673 [Citations: 0]
  72. A finite element model for fluid–structure interaction problems involving closed membranes, internal and external fluids

    Ryzhakov, Pavel B. | Oñate, Eugenio

    Computer Methods in Applied Mechanics and Engineering, Vol. 326 (2017), Iss. P.422

    https://doi.org/10.1016/j.cma.2017.08.014 [Citations: 16]
  73. Coupling linear sloshing with six degrees of freedom rigid body dynamics

    Dubois, François | Stoliaroff, Dimitri | Terrasse, Isabelle

    European Journal of Mechanics - B/Fluids, Vol. 54 (2015), Iss. P.17

    https://doi.org/10.1016/j.euromechflu.2015.06.002 [Citations: 2]
  74. IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics

    Toward the Problem of Low Re Flows Through Linearly Elastic Porous Media

    Becker, Sid

    2019

    https://doi.org/10.1007/978-3-030-13720-5_15 [Citations: 0]
  75. Computational Methods for Solids and Fluids

    Multiscale Analysis as a Central Component of Urban Physics Modeling

    Beckers, Benoit

    2016

    https://doi.org/10.1007/978-3-319-27996-1_1 [Citations: 0]
  76. Modelling of Flow-Induced Vibration of Bluff Bodies: A Comprehensive Survey and Future Prospects

    Wu, Ying | Cheng, Zhi | McConkey, Ryley | Lien, Fue-Sang | Yee, Eugene

    Energies, Vol. 15 (2022), Iss. 22 P.8719

    https://doi.org/10.3390/en15228719 [Citations: 12]
  77. Damage to structures due to explosion by discontinuous boundary elements

    Prochazka, Petr P.

    Acta Geodynamica et Geomaterialia, Vol. (2019), Iss. P.301

    https://doi.org/10.13168/AGG.2019.0026 [Citations: 0]
  78. Stability and Convergence Analysis of the Extensions of the Kinematically Coupled Scheme for the Fluid-Structure Interaction

    Bukac, Martina | Muha, Boris

    SIAM Journal on Numerical Analysis, Vol. 54 (2016), Iss. 5 P.3032

    https://doi.org/10.1137/16M1055396 [Citations: 26]
  79. Methodology for Comparing Coupling Algorithms for Fluid-Structure Interaction Problems

    Sheldon, Jason P. | Miller, Scott T. | Pitt, Jonathan S.

    World Journal of Mechanics, Vol. 04 (2014), Iss. 02 P.54

    https://doi.org/10.4236/wjm.2014.42007 [Citations: 12]
  80. Strength analysis of a regenerative flow compressor and a pump based on fluid-structure coupling

    Kumar, Mahendhar | Venkateshwaran, Akash | Pavan Kumar, Machavolu Sai Santhosh | Sreekanth, Manavalla | Jebaseelan, Davidson | Sivakumar, R.

    Materials Today: Proceedings, Vol. 51 (2022), Iss. P.1619

    https://doi.org/10.1016/j.matpr.2021.10.477 [Citations: 2]
  81. Unconditionally Stable Pressure-Correction Schemes for a Nonlinear Fluid-Structure Interaction Model

    He, Ying | Shen, Jie

    Communications on Applied Mathematics and Computation, Vol. (2019), Iss.

    https://doi.org/10.1007/s42967-019-0004-0 [Citations: 0]
  82. Development of 6-way CFD-DEM-FEM momentum coupling interface using partitioned coupling approach

    Adhav, Prasad | Besseron, Xavier | Peters, Bernhard

    Results in Engineering, Vol. 22 (2024), Iss. P.102214

    https://doi.org/10.1016/j.rineng.2024.102214 [Citations: 4]
  83. Using a Gaussian process regression inspired method to measure agreement between the experiment and CFD simulations

    Duan, Yu | Cooling, Christopher | Ahn, Ji Soo | Jackson, Christopher | Flint, Adam | Eaton, Matthew D. | Bluck, Michael J.

    International Journal of Heat and Fluid Flow, Vol. 80 (2019), Iss. P.108497

    https://doi.org/10.1016/j.ijheatfluidflow.2019.108497 [Citations: 25]
  84. A ghost-node immersed smoothed point interpolation method (ghost-node-ISPIM) for fluid-structure interaction problems

    Wang, Shuangqiang | Yan, Boqian | Zhang, Guiyong | Wang, Peng | Yang, Borui | Zhang, Zhifan

    Ocean Engineering, Vol. 242 (2021), Iss. P.110163

    https://doi.org/10.1016/j.oceaneng.2021.110163 [Citations: 2]
  85. Comparative Study on Uni- and Bi-Directional Fluid Structure Coupling of Wind Turbine Blades

    Ageze, Mesfin | Hu, Yefa | Wu, Huachun

    Energies, Vol. 10 (2017), Iss. 10 P.1499

    https://doi.org/10.3390/en10101499 [Citations: 11]
  86. Efficient two-way fluid–structure interaction simulation for performance prediction of pressure-compensating emitter

    Seo, Byung-hun | Lee, Sangik | Lee, Jong-hyuk | Kim, Dong-su | Seo, Ye-jin | Kim, Dong-woo | Choi, Won

    Biosystems Engineering, Vol. 244 (2024), Iss. P.53

    https://doi.org/10.1016/j.biosystemseng.2024.05.015 [Citations: 0]
  87. ELL for 3D FSI problems with thin flexible structures based on the continuum-based shell element

    Han, Dong | Liu, G.R. | Abdallah, Shaaban

    Journal of Fluids and Structures, Vol. 103 (2021), Iss. P.103281

    https://doi.org/10.1016/j.jfluidstructs.2021.103281 [Citations: 4]
  88. Numerical modeling and development of a dual lung simulator using partitioned fluid–structure interaction approach for ventilator testing

    Kumar, Rahul | Tokas, Sulekh | Hadda, Vijay | Rakshit, Dibakar | Sarkar, Jayati

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 38 (2022), Iss. 7

    https://doi.org/10.1002/cnm.3607 [Citations: 1]
  89. Mathematical Modeling, Simulation and Optimization for Power Engineering and Management

    Coupling of Two Hyperbolic Systems by Solving Half-Riemann Problems

    Herty, Michael | Müller, Siegfried | Sikstel, Aleksey

    2021

    https://doi.org/10.1007/978-3-030-62732-4_13 [Citations: 0]
  90. Characterizing Flow and Transport in Biological Vascular Systems: A Review from Physiological and Chemical Engineering Perspectives

    Chen, Zhe | Zhu, Li-Tao | Luo, Zheng-Hong

    Industrial & Engineering Chemistry Research, Vol. 63 (2024), Iss. 1 P.4

    https://doi.org/10.1021/acs.iecr.3c02463 [Citations: 2]
  91. Analytical and Experimental Aeroelastic Wing Flutter Analysis and Suppression

    Alsaif, Khalid A. | Foda, Mosaad A. | Fellouah, Hachimi

    International Journal of Structural Stability and Dynamics, Vol. 15 (2015), Iss. 06 P.1450084

    https://doi.org/10.1142/S0219455414500849 [Citations: 4]
  92. NUMERICAL PREDICTION FOR TRANSPORTATION OF GRAVEL PARTICLES AND SALTATION-COLLAPSE EQUILIBRIUM DUE TO VERTICAL JET

    USHIJIMA, Satoru | TORIU, Daisuke | YANAGI, Hirohumi | TANAKA, Hiroki

    Journal of Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics (AM)), Vol. 75 (2019), Iss. 2 P.I_289

    https://doi.org/10.2208/jscejam.75.2_I_289 [Citations: 2]
  93. Semi-Implicit Coupling of CS-FEM and FEM for the Interaction Between a Geometrically Nonlinear Solid and an Incompressible Fluid

    He, Tao

    International Journal of Computational Methods, Vol. 12 (2015), Iss. 05 P.1550025

    https://doi.org/10.1142/S0219876215500255 [Citations: 23]
  94. Lattice Boltzmann simulation of deformable fluid-filled bodies: progress and perspectives

    Silva, Danilo P. F. | Coelho, Rodrigo C. V. | Pagonabarraga, Ignacio | Succi, Sauro | Telo da Gama, Margarida M. | Araújo, Nuno A. M.

    Soft Matter, Vol. 20 (2024), Iss. 11 P.2419

    https://doi.org/10.1039/D3SM01648J [Citations: 8]
  95. Dual-functional synergetic energy harvesting and flow-induced vibration control of an electromagnetic-based square cylinder integrated with a flexible bimorph piezoelectric wake splitter plate

    Hasheminejad, Seyyed M. | Masoumi, Yasin

    Renewable Energy, Vol. 216 (2023), Iss. P.119133

    https://doi.org/10.1016/j.renene.2023.119133 [Citations: 6]
  96. Well‐Posedness and Global Behavior of the Peskin Problem of an Immersed Elastic Filament in Stokes Flow

    Mori, Yoichiro | Rodenberg, Analise | Spirn, Daniel

    Communications on Pure and Applied Mathematics, Vol. 72 (2019), Iss. 5 P.887

    https://doi.org/10.1002/cpa.21802 [Citations: 17]
  97. Added mass evaluation with a finite-volume solver for applications in fluid–structure interaction problems solved with co-simulation

    Yvin, C. | Leroyer, A. | Visonneau, M. | Queutey, P.

    Journal of Fluids and Structures, Vol. 81 (2018), Iss. P.528

    https://doi.org/10.1016/j.jfluidstructs.2018.05.008 [Citations: 13]
  98. Wake modeling and simulation of an experimental wind turbine using large eddy simulation coupled with immersed boundary method alongside a dynamic adaptive mesh refinement

    Stival, Leandro J.L. | Brinkerhoff, Joshua R. | Vedovotto, João Marcelo | de Andrade, Fernando Oliveira

    Energy Conversion and Management, Vol. 268 (2022), Iss. P.115938

    https://doi.org/10.1016/j.enconman.2022.115938 [Citations: 13]
  99. A comparison of finite-difference and spectral-element methods for elastic wave propagation in media with a fluid-solid interface

    De Basabe, Jonás D. | Sen, Mrinal K.

    Geophysical Journal International, Vol. 200 (2015), Iss. 1 P.278

    https://doi.org/10.1093/gji/ggu389 [Citations: 51]
  100. Influence of standard $$k-\varepsilon$$, SST $$\kappa -\omega$$ and LES turbulence models on the numerical assessment of a suspension bridge deck aerodynamic behavior

    Costa, L. M. F. | Montiel, J. E. S. | Corrêa, L. | Lofrano, F. C. | Nakao, O. S. | Kurokawa, F. A.

    Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 44 (2022), Iss. 8

    https://doi.org/10.1007/s40430-022-03653-1 [Citations: 3]
  101. Fluid-structure interaction analysis and lifetime estimation of a natural gas pipeline centrifugal compressor under near-choke and near-surge conditions

    Ju, Yaping | Liu, Hui | Yao, Ziyun | Xing, Peng | Zhang, Chuhua

    Chinese Journal of Mechanical Engineering, Vol. 28 (2015), Iss. 6 P.1261

    https://doi.org/10.3901/CJME.2015.0924.115 [Citations: 6]
  102. Human heart preservation analyses using convective cooling

    Bozidar Sarler, Dr Nicola Massarott, Professor | Abdoli, Abas | Dulikravich, George S. | Bajaj, Chandrajit L | Stowe, David F | Jahania, Salik M

    International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 25 (2015), Iss. 6 P.1426

    https://doi.org/10.1108/HFF-08-2014-0251 [Citations: 0]
  103. Multiphysics in Porous Materials

    Hydrodynomechanics: Fluid-Structure Interaction

    Liu, Zhen

    2018

    https://doi.org/10.1007/978-3-319-93028-2_25 [Citations: 0]
  104. Kernel-free boundary integral method for two-phase Stokes equations with discontinuous viscosity on staggered grids

    Dong, Haixia | Li, Shuwang | Ying, Wenjun | Zhao, Zhongshu

    Journal of Computational Physics, Vol. 492 (2023), Iss. P.112379

    https://doi.org/10.1016/j.jcp.2023.112379 [Citations: 2]
  105. Fully Coupled, Higher‐Order, Block‐Structured Mesh Generation in Fluid–Structure Interaction

    Schwentner, Teresa | Fries, Thomas‐Peter

    International Journal for Numerical Methods in Fluids, Vol. (2024), Iss.

    https://doi.org/10.1002/fld.5355 [Citations: 0]
  106. MULTICUBED: Multiscale-multiphysics simulation of food processing

    van der Sman, R.G.M.

    Food Structure, Vol. 33 (2022), Iss. P.100278

    https://doi.org/10.1016/j.foostr.2022.100278 [Citations: 7]
  107. Modeling and simulation of ice–water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics

    Liu, Renwei | Yan, Jiale | Li, Shaofan

    Computational Particle Mechanics, Vol. 7 (2020), Iss. 2 P.241

    https://doi.org/10.1007/s40571-019-00268-7 [Citations: 35]
  108. Structure Integrity Analysis Using Fluid–Structure Interaction at Hydropower Bottom Outlet Discharge

    Mohd Radzi, Mohd Rashid | Zawawi, Mohd Hafiz | Abas, Mohamad Aizat | Ahmad Mazlan, Ahmad Zhafran | Mohd Arif Zainol, Mohd Remy Rozainy | Hassan, Nurul Husna | Che Wan Zanial, Wan Norsyuhada | Dullah, Hayana | Kamaruddin, Mohamad Anuar

    Water, Vol. 15 (2023), Iss. 6 P.1039

    https://doi.org/10.3390/w15061039 [Citations: 1]
  109. Influence of crosswind on the flow induced vibration profile of high-speed train’s windshield

    Sun, Zhikun | Wang, Tiantian | Qian, Bosen | Chen, Dawei | Yao, Shuanbao | Han, Yundong | Ma, Jiangchuan | Wu, Yudong

    Journal of Fluids and Structures, Vol. 120 (2023), Iss. P.103902

    https://doi.org/10.1016/j.jfluidstructs.2023.103902 [Citations: 1]
  110. Recent acoustic energy harvesting methods and mechanisms: A review

    Patil, Avadhut T | Mandale, Maruti B

    Noise & Vibration Worldwide, Vol. 52 (2021), Iss. 11 P.397

    https://doi.org/10.1177/09574565211030702 [Citations: 5]
  111. Optimal \(\boldsymbol{L}^{\boldsymbol{2}}\) Error Analysis of a Loosely Coupled Finite Element Scheme for Thin-Structure Interactions

    Li, Buyang | Sun, Weiwei | Xie, Yupei | Yu, Wenshan

    SIAM Journal on Numerical Analysis, Vol. 62 (2024), Iss. 4 P.1782

    https://doi.org/10.1137/23M1578401 [Citations: 0]
  112. Acousto-Elastic Interactions in High-Pressure CO2 Centrifugal Compressors

    Jith, Jithin | Sarkar, Sunetra

    Journal of Vibration and Acoustics, Vol. 139 (2017), Iss. 6

    https://doi.org/10.1115/1.4036931 [Citations: 4]
  113. A versatile approach to numerically investigate the trapped air bubble in piezoelectric inkjet printing process

    Wang, Xiaopei | Wang, Chunhui | Ping, Pengxiang | Yan, Chao | Tian, Hongmiao | Shao, Jinyou

    Microfluidics and Nanofluidics, Vol. 27 (2023), Iss. 3

    https://doi.org/10.1007/s10404-023-02628-5 [Citations: 4]
  114. Multi-phase fluid–structure interaction using adaptive mesh refinement and immersed boundary method

    Souza, Pedro Ricardo C. | Neto, Hélio Ribeiro | Villar, Millena Martins | Vedovotto, João Marcelo | Cavalini, Aldemir Ap | Neto, Aristeu Silveira

    Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 44 (2022), Iss. 4

    https://doi.org/10.1007/s40430-022-03417-x [Citations: 6]
  115. Adaptive Mesh Refinement for Fluid-Structure Interaction Simulations

    Ojha, Vivek | Fidkowski, Krzysztof | Cesnik, Carlos E.

    AIAA Scitech 2021 Forum, (2021),

    https://doi.org/10.2514/6.2021-0731 [Citations: 2]
  116. Computing viscous flow along a 2D open channel using the immersed interface method

    Patterson, Sarah E. | Layton, Anita T.

    Engineering Reports, Vol. 3 (2021), Iss. 5

    https://doi.org/10.1002/eng2.12334 [Citations: 0]
  117. A note on the immersed finite element basis functions for elliptic interface problems

    Guan, Hongbo | Zhang, Zhimin | Zhu, Huiqing

    Applied Mathematics Letters, Vol. 115 (2021), Iss. P.106660

    https://doi.org/10.1016/j.aml.2020.106660 [Citations: 0]
  118. Mathematical modeling of vortex induced vibrations of an elastic rod under air flow influence

    Pogudalina, S. V. | Fedorova, N. N.

    (2018) P.020023

    https://doi.org/10.1063/1.5027335 [Citations: 3]
  119. Convergence improvement of the simultaneous relaxation method used in the finite element analysis of incompressible fluid flows

    Kohno, Haruhiko

    Engineering Computations, Vol. 37 (2019), Iss. 2 P.481

    https://doi.org/10.1108/EC-02-2019-0069 [Citations: 0]
  120. Flow-induced vibration of a radial gate at various opening heights

    Lee, Seung Oh | Seong, Hoje | Kang, Jun Won

    Engineering Applications of Computational Fluid Mechanics, Vol. 12 (2018), Iss. 1 P.567

    https://doi.org/10.1080/19942060.2018.1479662 [Citations: 3]
  121. Numerical investigation of the modal characteristics for a VVER-1000 fuel assembly

    Nazari, Tooraj | Rabiee, Ataollah | Kazeminejad, Hossein

    Nuclear Engineering and Design, Vol. 345 (2019), Iss. P.1

    https://doi.org/10.1016/j.nucengdes.2019.02.004 [Citations: 8]
  122. Optimum design and numerical modeling of a bladeless wind turbine

    Hasheminejad, Seyed Mahmoud | Masoumi, Yasin

    Marine Engineering, Vol. 19 (2023), Iss. 40 P.16

    https://doi.org/10.61186/marineeng.19.40.16 [Citations: 0]
  123. Coupling schemes for the FSI forward prediction challenge: Comparative study and validation

    Landajuela, Mikel | Vidrascu, Marina | Chapelle, Dominique | Fernández, Miguel A.

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 33 (2017), Iss. 4

    https://doi.org/10.1002/cnm.2813 [Citations: 21]
  124. Three-field partitioned analysis of fluid–structure interaction problems with a consistent interface model

    González, José A. | Park, K.C.

    Computer Methods in Applied Mechanics and Engineering, Vol. 414 (2023), Iss. P.116134

    https://doi.org/10.1016/j.cma.2023.116134 [Citations: 7]
  125. Aeroelastic Simulation Using CFD/CSD Coupling Based on Precise Integration Method

    Huang, Chengde | Huang, Jie | Song, Xin | Zheng, Guannan | Nie, Xueyuan

    International Journal of Aeronautical and Space Sciences, Vol. 21 (2020), Iss. 3 P.750

    https://doi.org/10.1007/s42405-020-00248-9 [Citations: 10]
  126. A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure

    Wu, Ke | Yang, Dongmin | Wright, Nigel

    Computers & Structures, Vol. 177 (2016), Iss. P.141

    https://doi.org/10.1016/j.compstruc.2016.08.012 [Citations: 122]
  127. Fast fluid–structure interaction simulations using a displacement-based finite element model equipped with an explicit streamline integration prediction

    Ryzhakov, P.B. | Marti, J. | Idelsohn, S.R. | Oñate, E.

    Computer Methods in Applied Mechanics and Engineering, Vol. 315 (2017), Iss. P.1080

    https://doi.org/10.1016/j.cma.2016.12.003 [Citations: 26]
  128. Elasto-capillary fluid–structure interaction with compound droplets

    Bhopalam, Sthavishtha R. | Bueno, Jesus | Gomez, Hector

    Computer Methods in Applied Mechanics and Engineering, Vol. 400 (2022), Iss. P.115507

    https://doi.org/10.1016/j.cma.2022.115507 [Citations: 11]
  129. Fluid–structure interaction modeling in cardiovascular medicine – A systematic review 2017–2019

    Hirschhorn, Matthew | Tchantchaleishvili, Vakhtang | Stevens, Randy | Rossano, Joseph | Throckmorton, Amy

    Medical Engineering & Physics, Vol. 78 (2020), Iss. P.1

    https://doi.org/10.1016/j.medengphy.2020.01.008 [Citations: 68]
  130. A Three-Dimensional Fully-Coupled Fluid-Structure Model for Tsunami Loading on Coastal Bridges

    Baragamage, Dilshan S. P. Amarasinghe | Wu, Weiming

    Water, Vol. 16 (2024), Iss. 1 P.189

    https://doi.org/10.3390/w16010189 [Citations: 2]
  131. A Stabilized Finite Element Method for the Stokes-Stokes Coupling Interface Problem

    Hussain, Shahid | Mahbub, Md. Abdullah Al | Shi, Feng

    Journal of Mathematical Fluid Mechanics, Vol. 24 (2022), Iss. 3

    https://doi.org/10.1007/s00021-022-00694-3 [Citations: 1]
  132. CFD simulation of vortex-induced vibration of an elastic cylinder in subcritical flow regime using a two-way coupled model validated by experiment

    Karthikeyan, S. | Nallayarasu, S.

    Ocean Engineering, Vol. 273 (2023), Iss. P.113956

    https://doi.org/10.1016/j.oceaneng.2023.113956 [Citations: 6]
  133. Projection Framework for Interfacial Treatment for Computational Fluid Dynamics/Computational Structural Dynamics Simulations

    Joseph, Nishit | Carrese, Robert | Marzocca, Pier

    AIAA Journal, Vol. 59 (2021), Iss. 6 P.2070

    https://doi.org/10.2514/1.J058886 [Citations: 6]
  134. A discontinuous Galerkin coupling for nonlinear elasto-acoustics

    Muhr, Markus | Wohlmuth, Barbara | Nikolić, Vanja

    IMA Journal of Numerical Analysis, Vol. 43 (2023), Iss. 1 P.225

    https://doi.org/10.1093/imanum/drab089 [Citations: 3]
  135. A Novel Approach for Direct Numerical Simulation of Hydraulic Fracture Problems

    Dalla Barba, F. | Picano, F.

    Flow, Turbulence and Combustion, Vol. 105 (2020), Iss. 2 P.335

    https://doi.org/10.1007/s10494-020-00145-x [Citations: 7]
  136. A fully Lagrangian formulation for fluid-structure interaction problems with free-surface flows and fracturing solids

    Cornejo, Alejandro | Franci, Alessandro | Zárate, Francisco | Oñate, Eugenio

    Computers & Structures, Vol. 250 (2021), Iss. P.106532

    https://doi.org/10.1016/j.compstruc.2021.106532 [Citations: 17]
  137. FSGe: A fast and strongly-coupled 3D fluid–solid-growth interaction method

    Pfaller, Martin R. | Latorre, Marcos | Schwarz, Erica L. | Gerosa, Fannie M. | Szafron, Jason M. | Humphrey, Jay D. | Marsden, Alison L.

    Computer Methods in Applied Mechanics and Engineering, Vol. 431 (2024), Iss. P.117259

    https://doi.org/10.1016/j.cma.2024.117259 [Citations: 0]
  138. AC-CBS-Based Partitioned Semi-Implicit Coupling Algorithm for Fluid-Structure Interaction Using Stabilized Second-Order Pressure Scheme

    He, Tao | Zhang, Kai | Wang, Tong

    Communications in Computational Physics, Vol. 21 (2017), Iss. 5 P.1449

    https://doi.org/10.4208/cicp.OA-2016-0106 [Citations: 16]
  139. Contributions to Partial Differential Equations and Applications

    An Algebraic Solver for the Oseen Problem with Application to Hemodynamics

    Konshin, Igor N. | Olshanskii, Maxim A. | Vassilevski, Yuri V.

    2019

    https://doi.org/10.1007/978-3-319-78325-3_18 [Citations: 1]
  140. Fracture propagation control in CO 2 pipelines: Validation of a coupled fluid–structure model

    Aursand, E. | Dumoulin, S. | Hammer, M. | Lange, H.I. | Morin, A. | Munkejord, S.T. | Nordhagen, H.O.

    Engineering Structures, Vol. 123 (2016), Iss. P.192

    https://doi.org/10.1016/j.engstruct.2016.05.012 [Citations: 46]
  141. Fatigue Strength Analysis of a Prototype Francis Turbine in a Multilevel Lifetime Assessment Procedure Part II: Method Application and Numerical Investigation

    Doujak, Eduard | Unterluggauer, Julian | Fillinger, Gerald | Nocker, Armin | Haller, Franz | Maier, Michael | Stadler, Simon

    Energies, Vol. 15 (2022), Iss. 3 P.1165

    https://doi.org/10.3390/en15031165 [Citations: 2]
  142. Analysis of Rotor Blade Aeroelastic Deformation Utilizing the Uncoupled Static Aeroelastic Analysis Method

    Phillips, Francis R. | White, Trent D. | Davis, Allen | Hartl, Darren J.

    AIAA SCITECH 2022 Forum, (2022),

    https://doi.org/10.2514/6.2022-2555 [Citations: 1]
  143. High-Fidelity Coupled Fluid-Structure Interaction Simulations with Adaptive Meshing

    Ojha, Vivek | Fidkowski, Krzysztof | Cesnik, Carlos E.

    AIAA Aviation 2019 Forum, (2019),

    https://doi.org/10.2514/6.2019-3056 [Citations: 0]
  144. Simulation Analysis of Fluid-Structure Interaction of High Velocity Environment Influence on Aircraft Wing Materials under Different Mach Numbers

    Zhang, Lijun | Sun, Changyan

    Sensors, Vol. 18 (2018), Iss. 4 P.1248

    https://doi.org/10.3390/s18041248 [Citations: 5]
  145. A one-field monolithic fictitious domain method for fluid–structure interactions

    Wang, Yongxing | Jimack, Peter K. | Walkley, Mark A.

    Computer Methods in Applied Mechanics and Engineering, Vol. 317 (2017), Iss. P.1146

    https://doi.org/10.1016/j.cma.2017.01.023 [Citations: 24]
  146. Sustained Simulation Performance 2019 and 2020

    Brinkman Penalization and Boundary Layer in High-Order Discontinuous Galerkin

    Ebrahimi Pour, Neda | Anand, Nikhil | Bernhards, Felix | Klimach, Harald | Roller, Sabine

    2021

    https://doi.org/10.1007/978-3-030-68049-7_6 [Citations: 0]
  147. Developing a Simulation Model to Numerically Estimate Energy Parameters and Wave Energy Converter Efficiency of a Floating Wave Power Plant

    Zhelonkin, Maxim | Kurkin, Andrey | Loskutov, Alexey | Plekhov, Alexander | Malyarov, Dmitry | Kryukov, Evgeny

    Energies, Vol. 16 (2023), Iss. 10 P.4150

    https://doi.org/10.3390/en16104150 [Citations: 2]
  148. Numerical simulation of the fluid–structure interaction for an elastic cylinder subjected to tubular fluid flow

    Liu, Z.G. | Liu, Y. | Lu, J.

    Computers & Fluids, Vol. 68 (2012), Iss. P.192

    https://doi.org/10.1016/j.compfluid.2012.08.010 [Citations: 33]
  149. FLUID–STRUCTURE-INTERACTION ANALYSIS FOR WELDED PIPES WITH FLOW-ACCELERATED CORROSION WALL THINNING

    Sun, Lan | Ding, Yuqing

    CNL Nuclear Review, Vol. 5 (2016), Iss. 1 P.49

    https://doi.org/10.12943/CNR.2015.00055 [Citations: 1]
  150. Control of mush complex viscosity on mid-ocean ridge topography: A fluid–structure model analysis

    Sen, Joyjeet | Sarkar, Shamik | Mandal, Nibir

    Physics of Fluids, Vol. 35 (2023), Iss. 6

    https://doi.org/10.1063/5.0152667 [Citations: 1]
  151. Immersed boundary methods for fluid-structure interaction: A review

    Kim, Woojin | Choi, Haecheon

    International Journal of Heat and Fluid Flow, Vol. 75 (2019), Iss. P.301

    https://doi.org/10.1016/j.ijheatfluidflow.2019.01.010 [Citations: 118]
  152. Investigation of nonlinear squeeze-film damping involving rarefied gas effect in micro-electro-mechanical systems

    Wang, Yong | Liu, Sha | Zhuo, Congshan | Zhong, Chengwen

    Computers & Mathematics with Applications, Vol. 114 (2022), Iss. P.188

    https://doi.org/10.1016/j.camwa.2022.03.045 [Citations: 19]
  153. A reduced smoothed integration scheme of the cell‐based smoothed finite element method for solving fluid–structure interaction on severely distorted meshes

    He, Tao | Lu, Fang‐Xing | Ma, Xi

    International Journal for Numerical Methods in Fluids, Vol. 96 (2024), Iss. 8 P.1337

    https://doi.org/10.1002/fld.5289 [Citations: 2]
  154. Sharp interface immersed boundary method for simulating three-dimensional swimming fish

    Cui, Zuo | Yang, Zixuan | Jiang, Hongzhou

    Engineering Applications of Computational Fluid Mechanics, Vol. 14 (2020), Iss. 1 P.534

    https://doi.org/10.1080/19942060.2020.1724197 [Citations: 7]
  155. Simulating fluid-structure interactions with a hybrid immersed smoothed point interpolation method

    Wang, Shuangqiang | Zhang, Guiyong | Yan, Boqian | Chen, Yuzhen | Zhang, Zhifan

    Engineering Analysis with Boundary Elements, Vol. 130 (2021), Iss. P.352

    https://doi.org/10.1016/j.enganabound.2021.05.026 [Citations: 8]
  156. A smoothed particle hydrodynamics–peridynamics coupling strategy for modeling fluid–structure interaction problems

    Sun, Wei-Kang | Zhang, Lu-Wen | Liew, K.M.

    Computer Methods in Applied Mechanics and Engineering, Vol. 371 (2020), Iss. P.113298

    https://doi.org/10.1016/j.cma.2020.113298 [Citations: 47]
  157. Fluttering conditions of an energy harvester for autonomous powering

    Olivieri, Stefano | Boccalero, Gregorio | Mazzino, Andrea | Boragno, Corrado

    Renewable Energy, Vol. 105 (2017), Iss. P.530

    https://doi.org/10.1016/j.renene.2016.12.067 [Citations: 34]
  158. Coupling Analysis of Liquid Sloshing and Structural Vibration Using General Software

    Zhu, C. F. | Tang, G. A. | Zhang, M. Y.

    Journal of Pressure Vessel Technology, Vol. 137 (2015), Iss. 1

    https://doi.org/10.1115/1.4026992 [Citations: 4]
  159. Analysis of thermally activated fluid-structure interaction for a morphing plate immersed in turbulent flow

    Caccavale, Paolo | Mele, Benedetto | De Bonis, Maria Valeria | Ruocco, Gianpaolo

    International Journal of Heat and Mass Transfer, Vol. 194 (2022), Iss. P.123081

    https://doi.org/10.1016/j.ijheatmasstransfer.2022.123081 [Citations: 3]
  160. Modelling and harnessing energy from flow-induced vibration, particularly VIV and galloping: An explicit review

    Francis, Sigil | Swain, Ashirbad

    Ocean Engineering, Vol. 312 (2024), Iss. P.119290

    https://doi.org/10.1016/j.oceaneng.2024.119290 [Citations: 0]
  161. POD-based reduced order model for flows induced by rigid bodies in forced rotation

    Falaize, Antoine | Liberge, Erwan | Hamdouni, Aziz

    Journal of Fluids and Structures, Vol. 91 (2019), Iss. P.102593

    https://doi.org/10.1016/j.jfluidstructs.2019.02.009 [Citations: 4]
  162. Solver-Independent Aeroelastic Coupling For Large-Scale Multidisciplinary Design Optimization

    van Schie, Sebastiaan P. | Zhao, Han | Yan, Jiayao | Xiang, Ru | Hwang, John T. | Kamensky, David

    AIAA SCITECH 2023 Forum, (2023),

    https://doi.org/10.2514/6.2023-0727 [Citations: 3]
  163. An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids

    Banks, J.W. | Henshaw, W.D. | Schwendeman, D.W.

    Journal of Computational Physics, Vol. 269 (2014), Iss. P.108

    https://doi.org/10.1016/j.jcp.2014.03.006 [Citations: 71]
  164. A coupled peridynamics–smoothed particle hydrodynamics model for fluid–structure interaction with large deformation

    Huang, Xieping | Zhu, Bin | Chen, Yunmin

    Physics of Fluids, Vol. 36 (2024), Iss. 11

    https://doi.org/10.1063/5.0238868 [Citations: 0]
  165. Study on the jetting characteristics of an underwater explosion bubble collapsing near a floating body

    Wu, Cheng-Long | Liu, Nian-Nian | Wang, Qi | Zhao, Peng-Duo | Sun, Peng-Nan | Yue, Song-Lin

    Physics of Fluids, Vol. 36 (2024), Iss. 10

    https://doi.org/10.1063/5.0230647 [Citations: 0]
  166. A novel method to predict fluid/structure interaction in IC packaging

    Hsu, Chih-Chung | Wang, Tzu-Chang | Chen, Yen-Chi | Lin, Yang-Kai

    2014 IEEE 64th Electronic Components and Technology Conference (ECTC), (2014), P.1258

    https://doi.org/10.1109/ECTC.2014.6897453 [Citations: 1]
  167. A Unified Arbitrary Lagrangian–Eulerian Model for Fluid–Structure Interaction Problems Involving Flows in Flexible Channels

    Ryzhakov, P. B. | Marti, J. | Dialami, N.

    Journal of Scientific Computing, Vol. 90 (2022), Iss. 3

    https://doi.org/10.1007/s10915-021-01748-w [Citations: 8]
  168. Modeling and simulation of sheets ply separation induced by air flow

    He, Xin | Li, XiaoPing | Yang, Jinrong

    Engineering Computations, Vol. 37 (2020), Iss. 4 P.1133

    https://doi.org/10.1108/EC-03-2019-0109 [Citations: 0]
  169. An Overview of Numerical Methods for Incompressible Viscous Flow with Moving Particles

    Wu, Yu-Ching | Yang, Bin

    Archives of Computational Methods in Engineering, Vol. 26 (2019), Iss. 4 P.1255

    https://doi.org/10.1007/s11831-018-9277-0 [Citations: 14]
  170. Fluid-Structure Interaction Analysis of the Fish Bone Active Camber Mechanism

    Woods, Benjamin K. | Friswell, Michael I.

    54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, (2013),

    https://doi.org/10.2514/6.2013-1908 [Citations: 12]
  171. A fictitious domain approach for the Stokes problem based on the extended finite element method

    Court, Sébastien | Fournié, Michel | Lozinski, Alexei

    International Journal for Numerical Methods in Fluids, Vol. 74 (2014), Iss. 2 P.73

    https://doi.org/10.1002/fld.3839 [Citations: 21]
  172. The influence of oil source pressure fluctuation on the waviness error of potassium dihydrogen phosphate in ultra-precision machining

    Gao, Qiang | Lu, Lihua | Chen, Wanqun | Wang, Guanglin

    Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 233 (2019), Iss. 2 P.486

    https://doi.org/10.1177/0954405417738283 [Citations: 8]
  173. Benchmarking of Computational Fluid Methodologies in Resolving Shear-Driven Flow Fields

    Horton, Brandon | Song, Yangkun | Feaster, Jeffrey | Bayandor, Javid

    Journal of Fluids Engineering, Vol. 139 (2017), Iss. 11

    https://doi.org/10.1115/1.4036590 [Citations: 5]
  174. Decoupled modified characteristic finite element method for the time‐dependent Navier–Stokes/Biot problem

    Guo, Liming | Chen, Wenbin

    Numerical Methods for Partial Differential Equations, Vol. 38 (2022), Iss. 6 P.1684

    https://doi.org/10.1002/num.22830 [Citations: 4]
  175. A stable RBF partition of unity local method for elliptic interface problems in two dimensions

    Gholampour, Faranak | Hesameddini, Esmail | Taleei, Ameneh

    Engineering Analysis with Boundary Elements, Vol. 123 (2021), Iss. P.220

    https://doi.org/10.1016/j.enganabound.2020.10.016 [Citations: 16]
  176. Splitting schemes for the stress formulation of fluid–structure interaction problems

    Minev, Peter | Usubov, Rahim

    Applications in Engineering Science, Vol. 9 (2022), Iss. P.100082

    https://doi.org/10.1016/j.apples.2022.100082 [Citations: 1]
  177. Static response of deformable microchannels: a comparative modelling study

    Shidhore, Tanmay C | Christov, Ivan C

    Journal of Physics: Condensed Matter, Vol. 30 (2018), Iss. 5 P.054002

    https://doi.org/10.1088/1361-648X/aaa226 [Citations: 15]
  178. Multiphysics in Porous Materials

    Thermoelectromagnetics

    Liu, Zhen

    2018

    https://doi.org/10.1007/978-3-319-93028-2_26 [Citations: 0]
  179. Experiments on Flexible Filaments in Air Flow for Aeroelasticity and Fluid-Structure Interaction Models Validation

    Silva-Leon, Jorge | Cioncolini, Andrea

    Fluids, Vol. 5 (2020), Iss. 2 P.90

    https://doi.org/10.3390/fluids5020090 [Citations: 5]
  180. Fluid Structure Interaction on a Flexible Micro Air Vehicle

    Chen, Jason Z. | Qin, Ning

    53rd AIAA Aerospace Sciences Meeting, (2015),

    https://doi.org/10.2514/6.2015-0255 [Citations: 0]
  181. A monolithic mixed finite element method for a fluid-structure interaction problem

    Bean, Maranda | Yi, Son-Young

    Applied Mathematics and Computation, Vol. 363 (2019), Iss. P.124615

    https://doi.org/10.1016/j.amc.2019.124615 [Citations: 4]
  182. A local RBF collocation method for band structure computations of 2D solid/fluid and fluid/solid phononic crystals

    Zheng, Hui | Zhang, Chuanzeng | Wang, Yuesheng | Chen, Wen | Sladek, Jan | Sladek, Vladimir

    International Journal for Numerical Methods in Engineering, Vol. 110 (2017), Iss. 5 P.467

    https://doi.org/10.1002/nme.5366 [Citations: 43]
  183. Two-dimensional numerical simulations of solitary wave interaction with a vertical elastic plate

    Hsiao, Yu | Hsiao, Shih-Chun | Liu, Philip Li-Fan

    Ocean Engineering, Vol. 284 (2023), Iss. P.115160

    https://doi.org/10.1016/j.oceaneng.2023.115160 [Citations: 1]
  184. Uncoupled Method for Massively Parallelizable 3D Fluid-Structure Interaction Analysis and Design

    White, Trent | Phillips, Francis | Scholten, William | Henry, Todd | Hrynuk, John | Hartl, Darren

    AIAA AVIATION 2020 FORUM, (2020),

    https://doi.org/10.2514/6.2020-3126 [Citations: 6]
  185. A flow-reconstruction based approach for the computation of hydrodynamic stresses on immersed body surface

    Jiang, Xinyu | Huang, Weixi | Xu, Chunxiao | Zhao, Lihao

    Journal of Computational Physics, Vol. 508 (2024), Iss. P.113025

    https://doi.org/10.1016/j.jcp.2024.113025 [Citations: 0]
  186. A parallel domain decomposition algorithm for fluid-structure interaction simulations of the left ventricle with patient-specific shape

    Chang, Yujia | Jiang, Yi | Chen, Rongliang

    Electronic Research Archive, Vol. 30 (2022), Iss. 9 P.3377

    https://doi.org/10.3934/era.2022172 [Citations: 0]
  187. Analysis of the Dynamics of a Freely Falling Body in a Viscous Fluid: Computational Fluid Dynamics Approach

    Chukwuneke, J.L | Aniemene, C.P | Okolie, P.C | Obele, C.M | Chukwuma, E.C

    International Journal of Thermofluids, Vol. 14 (2022), Iss. P.100157

    https://doi.org/10.1016/j.ijft.2022.100157 [Citations: 2]
  188. Fluid/Structure-Interaction Analysis of the Fish-Bone-Active-Camber Morphing Concept

    Woods, Benjamin K. S. | Dayyani, Iman | Friswell, Michael I.

    Journal of Aircraft, Vol. 52 (2015), Iss. 1 P.307

    https://doi.org/10.2514/1.C032725 [Citations: 59]
  189. Development of a high-fidelity partitioned Fluid–Structure Interaction model of an Omega-shaped Coriolis Mass Meter and comparison with experimental data

    Birjandi, A.K. | Shayegan, Sh. | Bletzinger, K.-U. | Wüchner, R.

    Journal of Fluids and Structures, Vol. 110 (2022), Iss. P.103510

    https://doi.org/10.1016/j.jfluidstructs.2022.103510 [Citations: 1]
  190. Fluid-structure interaction simulation of artificial textile reinforced aortic heart valve: Validation with an in-vitro test

    Sodhani, Deepanshu | Reese, Stefanie | Aksenov, Andrey | Soğanci, Sinan | Jockenhövel, Stefan | Mela, Petra | Stapleton, Scott E.

    Journal of Biomechanics, Vol. 78 (2018), Iss. P.52

    https://doi.org/10.1016/j.jbiomech.2018.07.018 [Citations: 25]
  191. A concise guide to modelling the physics of embodied intelligence in soft robotics

    Mengaldo, Gianmarco | Renda, Federico | Brunton, Steven L. | Bächer, Moritz | Calisti, Marcello | Duriez, Christian | Chirikjian, Gregory S. | Laschi, Cecilia

    Nature Reviews Physics, Vol. 4 (2022), Iss. 9 P.595

    https://doi.org/10.1038/s42254-022-00481-z [Citations: 65]
  192. Analysis and Computation of a Weak Galerkin Scheme for Solving the 2D/3D Stationary Stokes Interface Problems with High-Order Elements

    Kumar, Raman | Deka, Bhupen

    Journal of Numerical Mathematics, Vol. 0 (2024), Iss. 0

    https://doi.org/10.1515/jnma-2023-0112 [Citations: 0]
  193. A Sharp-Interface Immersed Boundary Method for Simulating Incompressible Flows with Arbitrarily Deforming Smooth Boundaries

    Cui, Zuo | Yang, Zixuan | Jiang, Hong-Zhou | Huang, Wei-Xi | Shen, Lian

    International Journal of Computational Methods, Vol. 15 (2018), Iss. 01 P.1750080

    https://doi.org/10.1142/S0219876217500803 [Citations: 29]
  194. A new meshless approach to map electromagnetic loads for FEM analysis on DEMO TF coil system

    Biancolini, Marco Evangelos | Brutti, Carlo | Giorgetti, Francesco | Muzzi, Luigi | Turtù, Simonetta | Anemona, Alessandro

    Fusion Engineering and Design, Vol. 100 (2015), Iss. P.226

    https://doi.org/10.1016/j.fusengdes.2015.06.031 [Citations: 10]
  195. Fatigue life assessment and verification of turbine joints: current status and prospects

    Dianyin, Hu | Nakashima, Kenichi | Sato, Haruto | Xiaojie, Zhang | Kimura, Sakura | Yuanxing, Gu | Rongqiao, Wang

    Scientific Insights and Discoveries Review, Vol. 4 (2024), Iss. P.113

    https://doi.org/10.59782/sidr.v4i1.85 [Citations: 0]
  196. Validation of Structural Modeling for Realistic Wing Topologies Involved in FSI Analyses: RIBES Test Case

    Biancolini, Marco Evangelos | Groth, Corrado | Porziani, Stefano | Chiappa, Andrea | Giorgetti, Francesco | Nicolosi, Fabrizio | Cella, Ubaldo

    Journal of Aerospace Engineering, Vol. 34 (2021), Iss. 1

    https://doi.org/10.1061/(ASCE)AS.1943-5525.0001200 [Citations: 3]
  197. Design and fabrication of a piezoelectric MEMS xylophone transducer with a flexible electrical connection

    Zhao, Chuming | Knisely, Katherine E. | Grosh, Karl

    Sensors and Actuators A: Physical, Vol. 275 (2018), Iss. P.29

    https://doi.org/10.1016/j.sna.2018.03.038 [Citations: 17]
  198. Development of a High-Order Fluid-Structure Interaction Solver for Flexible Wings

    Frigoletto, Braden E. | Ojha, Vivek | Fidkowski, Krzysztof | Cesnik, Carlos E.

    AIAA SCITECH 2023 Forum, (2023),

    https://doi.org/10.2514/6.2023-0185 [Citations: 0]
  199. Engineering Design Exploration Using Locally Optimized Covariance Kriging

    Clark, Daniel L. | Bae, Ha-Rok | Gobal, Koorosh | Penmetsa, Ravi

    AIAA Journal, Vol. 54 (2016), Iss. 10 P.3160

    https://doi.org/10.2514/1.J054860 [Citations: 27]
  200. Modeling Hemodynamics in Vascular Networks Using a Geometrical Multiscale Approach: Numerical Aspects

    Taelman, Liesbeth | Degroote, Joris | Verdonck, Pascal | Vierendeels, Jan | Segers, Patrick

    Annals of Biomedical Engineering, Vol. 41 (2013), Iss. 7 P.1445

    https://doi.org/10.1007/s10439-012-0717-y [Citations: 17]
  201. Software Engineering Perspectives in Intelligent Systems

    A Computational Simulation of Steady Natural Convection in an H-Form Cavity

    Loukili, Mohamed | Kotrasova, Kamila | Dutykh, Denys

    2020

    https://doi.org/10.1007/978-3-030-63319-6_15 [Citations: 1]
  202. Fluid-structure interaction problem of a deformable lamina solved with an original OpenFOAM code

    Fanelli, Pierluigi | Stefanini, Chiara | Facci, Andrea L. | Ubertini, Stefano

    Procedia Structural Integrity, Vol. 24 (2019), Iss. P.939

    https://doi.org/10.1016/j.prostr.2020.02.082 [Citations: 2]
  203. Development of a novel high-efficiency dynamic hydrocyclone for oil–water separation

    Huang, Long | Deng, Songsheng | Guan, Jinfa | Chen, Ming | Hua, Weixing

    Chemical Engineering Research and Design, Vol. 130 (2018), Iss. P.266

    https://doi.org/10.1016/j.cherd.2017.12.030 [Citations: 27]
  204. A second-order time accurate semi-implicit method for fluid–structure interaction problems

    Naseri, Alireza | Gonzalez, Ignacio | Amani, Ahmad | Pérez-Segarra, Carlos David | Oliva, Assensi

    Journal of Fluids and Structures, Vol. 86 (2019), Iss. P.135

    https://doi.org/10.1016/j.jfluidstructs.2019.02.007 [Citations: 8]
  205. A DEM approach for simulating flexible beam elements with the Project Chrono core module in DualSPHysics

    Capasso, Salvatore | Tagliafierro, Bonaventura | Martínez-Estévez, Iván | Domínguez, José M. | Crespo, Alejandro J. C. | Viccione, Giacomo

    Computational Particle Mechanics, Vol. 9 (2022), Iss. 5 P.969

    https://doi.org/10.1007/s40571-021-00451-9 [Citations: 19]
  206. Fluid structure interaction with curved space lattice Boltzmann

    Flouris, Kyriakos | Jimenez, Miller Mendoza | Munglani, Gautam | Wittel, Falk K. | Debus, Jens-Daniel | Herrmann, Hans J.

    Computers & Fluids, Vol. 168 (2018), Iss. P.32

    https://doi.org/10.1016/j.compfluid.2018.03.044 [Citations: 4]
  207. A review of the numerical strategies for solving ship hydroelasticity based on CFD-FEM technology

    Li, Hui | Han, Bingbing | Liu, Shengnan | Chen, Sangui | Wang, Zhenyang | Deng, Baoli

    Ships and Offshore Structures, Vol. (2024), Iss. P.1

    https://doi.org/10.1080/17445302.2024.2317040 [Citations: 1]
  208. A coupled SPH-PD model for fluid–structure interaction in an irregular channel flow considering the structural failure

    Sun, Wei-Kang | Zhang, Lu-Wen | Liew, K.M.

    Computer Methods in Applied Mechanics and Engineering, Vol. 401 (2022), Iss. P.115573

    https://doi.org/10.1016/j.cma.2022.115573 [Citations: 16]
  209. Unsteady fluid-structure interactions in a soft-walled microchannel: A one-dimensional lubrication model for finite Reynolds number

    Inamdar, Tanmay C. | Wang, Xiaojia | Christov, Ivan C.

    Physical Review Fluids, Vol. 5 (2020), Iss. 6

    https://doi.org/10.1103/PhysRevFluids.5.064101 [Citations: 12]
  210. Convergence study of the Immersed Domain method for periodic particle configurations

    Schubert, Raphael | Kraft, Torsten | Bierwisch, Claas

    Powder Technology, Vol. 337 (2018), Iss. P.104

    https://doi.org/10.1016/j.powtec.2017.08.054 [Citations: 1]
  211. Optimal Order Error Estimates of a Modified Nonconforming Rotated Q1 IFEM for Interface Problems

    Yin, Pei | Yue, Hongyun | Guan, Hongbo

    Mathematical Problems in Engineering, Vol. 2020 (2020), Iss. P.1

    https://doi.org/10.1155/2020/2081948 [Citations: 0]
  212. A partitioned solver to simulate large-displacement fluid–structure interaction of thin plate systems for vibration energy harvesting

    Chawdhury, Samir | Morgenthal, Guido

    Computers & Structures, Vol. 224 (2019), Iss. P.106110

    https://doi.org/10.1016/j.compstruc.2019.106110 [Citations: 14]
  213. Cell Movement

    Sperm Motility: Models for Dynamic Behavior in Complex Environments

    Simons, Julie E. | Olson, Sarah D.

    2018

    https://doi.org/10.1007/978-3-319-96842-1_7 [Citations: 9]
  214. Immersed Boundary Methods for Simulations of Biological Flows in Swimming and Flying Bio-Locomotion: A Review

    Zeng, Yuhang | Wang, Yan | Yang, Dangguo | Chen, Qing

    Applied Sciences, Vol. 13 (2023), Iss. 7 P.4208

    https://doi.org/10.3390/app13074208 [Citations: 7]
  215. A scalable nonlinear fluid–structure interaction solver based on a Schwarz preconditioner with isogeometric unstructured coarse spaces in 3D

    Kong, Fande | Cai, Xiao-Chuan

    Journal of Computational Physics, Vol. 340 (2017), Iss. P.498

    https://doi.org/10.1016/j.jcp.2017.03.043 [Citations: 31]
  216. Multiphysics Modelling

    Multiphysics Modelling of Interactions in Systems

    Peksen, Murat

    2018

    https://doi.org/10.1016/B978-0-12-811824-5.00005-5 [Citations: 3]
  217. A novel artificial neural network-based interface coupling approach for partitioned fluid–structure interaction problems

    Mazhar, Farrukh | Javed, Ali | Altinkaynak, Atakan

    Engineering Analysis with Boundary Elements, Vol. 151 (2023), Iss. P.287

    https://doi.org/10.1016/j.enganabound.2023.02.022 [Citations: 4]
  218. Unified momentum equation approach for fluid–structure interaction problems involving linear elastic structures

    Yeo, Haram | Ki, Hyungson

    Journal of Computational Physics, Vol. 415 (2020), Iss. P.109482

    https://doi.org/10.1016/j.jcp.2020.109482 [Citations: 3]
  219. Lattice Boltzmann simulation of particles agglomeration and rheology in a particulate flow

    Samari Kermani, Mandana | Rahnama, Mohammad | Djilali, Ned | Jafari, Saeed | Jahanshahi Javaran, Ebrahim

    Journal of Dispersion Science and Technology, Vol. 39 (2018), Iss. 6 P.777

    https://doi.org/10.1080/01932691.2017.1388181 [Citations: 2]
  220. Evolutionary topology optimization for structural compliance minimization considering design-dependent FSI loads

    Picelli, R. | Vicente, W.M. | Pavanello, R.

    Finite Elements in Analysis and Design, Vol. 135 (2017), Iss. P.44

    https://doi.org/10.1016/j.finel.2017.07.005 [Citations: 33]
  221. Numerical simulation of an immersed rotating structure in fluid for hemodynamic applications

    Leng, Wei | Zhang, Chen-Song | Sun, Pengtao | Gao, Bin | Xu, Jinchao

    Journal of Computational Science, Vol. 30 (2019), Iss. P.79

    https://doi.org/10.1016/j.jocs.2018.11.010 [Citations: 8]
  222. A semi-implicit coupling technique for fluid–structure interaction problems with strong added-mass effect

    Naseri, Alireza | Lehmkuhl, Oriol | Gonzalez, Ignacio | Bartrons, Eduard | Pérez-Segarra, Carlos David | Oliva, Assensi

    Journal of Fluids and Structures, Vol. 80 (2018), Iss. P.94

    https://doi.org/10.1016/j.jfluidstructs.2018.03.012 [Citations: 19]
  223. Modeling blood flow around a thrombus using a hybrid particle–continuum approach

    Mukherjee, Debanjan | Shadden, Shawn C.

    Biomechanics and Modeling in Mechanobiology, Vol. 17 (2018), Iss. 3 P.645

    https://doi.org/10.1007/s10237-017-0983-6 [Citations: 16]
  224. Critical Analysis of the Suitability of Surrogate Models for Finite Element Method Application in Catalog-Based Suspension Bushing Design

    Cernuda, Carlos | Llavori, Inigo | Zavoianu, Alexandru-Ciprian | Aguirre, Aitor | Zabala, Alaitz | Plaza, Jon

    2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), (2020), P.829

    https://doi.org/10.1109/ETFA46521.2020.9212166 [Citations: 4]
  225. Viscous flow in a slit between two elastic plates

    Christensen, Anneline H. | Jensen, Kaare H.

    Physical Review Fluids, Vol. 5 (2020), Iss. 4

    https://doi.org/10.1103/PhysRevFluids.5.044101 [Citations: 5]
  226. A strongly-coupled immersed-boundary formulation for thin elastic structures

    Goza, Andres | Colonius, Tim

    Journal of Computational Physics, Vol. 336 (2017), Iss. P.401

    https://doi.org/10.1016/j.jcp.2017.02.027 [Citations: 68]
  227. A local radial basis function collocation method for band structure computation of 3D phononic crystals

    Zheng, H. | Zhang, Ch. | Yang, Z.

    Applied Mathematical Modelling, Vol. 77 (2020), Iss. P.1954

    https://doi.org/10.1016/j.apm.2019.09.006 [Citations: 29]
  228. Multifidelity Method for Locating Aeroelastic Flutter Boundaries

    Marques, Alexandre N. | Opgenoord, Max M. J. | Lam, Remi R. | Chaudhuri, Anirban | Willcox, Karen E.

    AIAA Journal, Vol. 58 (2020), Iss. 4 P.1772

    https://doi.org/10.2514/1.J058663 [Citations: 13]
  229. NUMERICAL METHODS OF NEW MIXED FINITE ELEMENT SCHEME FOR SINGLE-PHASE COMPRESSIBLE FLOW

    ZHAI, SHUYING | FENG, XINLONG | WENG, ZHIFENG

    International Journal of Computational Methods, Vol. 11 (2014), Iss. 01 P.1350055

    https://doi.org/10.1142/S0219876213500552 [Citations: 2]
  230. A Physics-Based Projection Algorithm for Fluid Structure Interaction Simulations

    Joseph, Nishit | Carrese, Robert | Marzocca, Pier

    AIAA Scitech 2019 Forum, (2019),

    https://doi.org/10.2514/6.2019-0487 [Citations: 1]
  231. Blast Performance and Damage Evaluation of High Arch Dams Subjected to Far-Field Underwater Explosions: Consideration of Joints

    Pan, Xinhao | Wang, Gaohui | Lu, Wenbo | Wang, Yang | Shu, Yizhan | Zhang, Xiangyu

    Journal of Structural Engineering, Vol. 149 (2023), Iss. 3

    https://doi.org/10.1061/JSENDH.STENG-11918 [Citations: 6]
  232. Capturing the dynamical transitions in the flow-field of a flapping foil using Immersed Boundary Method

    Majumdar, Dipanjan | Bose, Chandan | Sarkar, Sunetra

    Journal of Fluids and Structures, Vol. 95 (2020), Iss. P.102999

    https://doi.org/10.1016/j.jfluidstructs.2020.102999 [Citations: 23]
  233. Finite Element Analysis Applications

    Applications—Multiphysics Systems

    Bi, Zhuming

    2018

    https://doi.org/10.1016/B978-0-12-809952-0.00011-X [Citations: 0]
  234. An incompressible immersed boundary solver for moving body flows using a cut cell discontinuous Galerkin method

    Krause, Dennis | Kummer, Florian

    Computers & Fluids, Vol. 153 (2017), Iss. P.118

    https://doi.org/10.1016/j.compfluid.2017.05.008 [Citations: 17]
  235. Modeling and simulations for fluid and rotating structure interactions

    Yang, Kai | Sun, Pengtao | Wang, Lu | Xu, Jinchao | Zhang, Lixiang

    Computer Methods in Applied Mechanics and Engineering, Vol. 311 (2016), Iss. P.788

    https://doi.org/10.1016/j.cma.2016.09.020 [Citations: 23]
  236. An examination of hub wind turbine utilizing fluid-structure interaction strategy

    Yassen, Yassen El.S. | Abdelhameed, Ahmed S. | Elshorbagy, Kamel A.

    Alexandria Engineering Journal, Vol. 64 (2023), Iss. P.1

    https://doi.org/10.1016/j.aej.2022.08.042 [Citations: 5]
  237. Optimal design of an aerostatic spindle based on fluid–structure interaction method and its verification

    Lu, Lihua | Chen, Wanqun | Wu, Bin | Gao, Qiang | Wu, Quanhui

    Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 230 (2016), Iss. 6 P.690

    https://doi.org/10.1177/1350650115611156 [Citations: 16]
  238. ICDSME 2019

    Numerical and Physical Model Analysis Comparison for Velocity of Water at Spillway

    Zaki, S. A. A. | Hassan, N. H. | Zawawi, M. H. | Abas, M. A. | Mazlan, A. Z. A. | Zainol, M. R. R. M. A. | Radzi, M. R. M.

    2020

    https://doi.org/10.1007/978-981-15-1971-0_41 [Citations: 2]
  239. Reference Module in Food Science

    Different Modeling and Simulation Approaches for Food Processing Operations

    Rauh, Cornelia | Delgado, Antonio | Park, Jinyoung

    2016

    https://doi.org/10.1016/B978-0-08-100596-5.03229-7 [Citations: 0]
  240. A time splitting fictitious domain algorithm for fluid–structure interaction problems (A fictitious domain algorithm for FSI)

    Roshchenko, Andriy | Minev, Peter D. | Finlay, Warren H.

    Journal of Fluids and Structures, Vol. 58 (2015), Iss. P.109

    https://doi.org/10.1016/j.jfluidstructs.2015.07.006 [Citations: 9]
  241. The impact of fluid flow on force chains in granular media

    Mahabadi, Nariman | Jang, Jaewon

    Applied Physics Letters, Vol. 110 (2017), Iss. 4

    https://doi.org/10.1063/1.4975065 [Citations: 25]
  242. Undulatory topographical waves for flow-induced foulant sweeping

    Ko, Hangil | Park, Hyun-Ha | Byeon, Hyeokjun | Kang, Minsu | Ryu, Jaeha | Sung, Hyung Jin | Lee, Sang Joon | Jeong, Hoon Eui

    Science Advances, Vol. 5 (2019), Iss. 11

    https://doi.org/10.1126/sciadv.aax8935 [Citations: 19]
  243. Assessment and practical application of mapping algorithms for beam elements in computational FSI

    Wang, Tianyang | Wüchner, Roland | Bletzinger, Kai-Uwe

    European Journal of Computational Mechanics, Vol. 25 (2016), Iss. 5 P.417

    https://doi.org/10.1080/17797179.2016.1249732 [Citations: 3]
  244. ALE incompressible fluid–shell coupling based on a higher-order auxiliary mesh and positional shell finite element

    Fernandes, Jeferson Wilian Dossa | Coda, Humberto Breves | Sanches, Rodolfo André Kuche

    Computational Mechanics, Vol. 63 (2019), Iss. 3 P.555

    https://doi.org/10.1007/s00466-018-1609-2 [Citations: 6]
  245. Fluid-structure interaction simulation for multi-body flexible morphing structures

    GUO, Wenzhi | SHUI, Yongtao | NIE, Lu | CHEN, Gang

    Chinese Journal of Aeronautics, Vol. 37 (2024), Iss. 2 P.137

    https://doi.org/10.1016/j.cja.2023.09.009 [Citations: 1]
  246. Multiphysics in Porous Materials

    Finite Volume Method

    Liu, Zhen

    2018

    https://doi.org/10.1007/978-3-319-93028-2_29 [Citations: 2]
  247. Computational Fluid Dynamics in Cardiovascular Engineering: A Comprehensive Review

    Dake, Prithvi G. | Mukherjee, Joydeb | Sahu, Kirti Chandra | Pandit, Aniruddha B.

    Transactions of the Indian National Academy of Engineering, Vol. 9 (2024), Iss. 2 P.335

    https://doi.org/10.1007/s41403-024-00478-3 [Citations: 2]
  248. Numerical simulation and experimental study of fluid–structure interactions in elastic structures based on the SPH method

    Zhang, Jianwei | Wang, Bingpeng | Hou, Ge | Liu, Hongze | Li, Zhirui | Hu, Zixu | Wu, Weitao

    Ocean Engineering, Vol. 301 (2024), Iss. P.117523

    https://doi.org/10.1016/j.oceaneng.2024.117523 [Citations: 2]
  249. Numerical investigations on flow-induced vibration of fuel rods with spacer grids subjected to turbulent flow

    Liu, Haidong | Chen, Deqi | Hu, Lian | Yuan, Dewen | Gao, Hong

    Nuclear Engineering and Design, Vol. 325 (2017), Iss. P.68

    https://doi.org/10.1016/j.nucengdes.2017.10.004 [Citations: 24]
  250. Parallel Dynamic Analysis of a Large-Scale Water Conveyance Tunnel under Seismic Excitation Using ALE Finite-Element Method

    Wang, Xiaoqing | Jin, Xianlong | Wang, Puyong | Yang, Zhihao

    Applied Sciences, Vol. 6 (2016), Iss. 2 P.36

    https://doi.org/10.3390/app6020036 [Citations: 4]
  251. Novel windowed multi-resolution Dynamic Mode Decomposition (wmrDMD): Application to unsteady surface pressure over a wing in flutter

    Gonzales, Joseph | Sakaue, Hirotaka | Jemcov, Aleksandar

    Aerospace Science and Technology, Vol. 127 (2022), Iss. P.107718

    https://doi.org/10.1016/j.ast.2022.107718 [Citations: 2]
  252. Investigation of Fluid-Structure Interaction Induced Bending for Elastic Flaps in a Cross Flow

    Bano, Tayyaba | Hegner, Franziska | Heinrich, Martin | Schwarze, Ruediger

    Applied Sciences, Vol. 10 (2020), Iss. 18 P.6177

    https://doi.org/10.3390/app10186177 [Citations: 15]
  253. A Monolithic Divergence-Conforming HDG Scheme for a Linear Fluid-Structure Interaction Model

    Fu, Guosheng | Kuang, Wenzheng

    SIAM Journal on Numerical Analysis, Vol. 60 (2022), Iss. 2 P.631

    https://doi.org/10.1137/20M1385950 [Citations: 3]
  254. A polytree-based adaptive polygonal finite element method for topology optimization of fluid-submerged breakwater interaction

    Vu-Huu, T. | Phung-Van, P. | Nguyen-Xuan, H. | Abdel Wahab, M.

    Computers & Mathematics with Applications, Vol. 76 (2018), Iss. 5 P.1198

    https://doi.org/10.1016/j.camwa.2018.06.008 [Citations: 28]
  255. 3-D multiparameter full-waveform inversion for ocean-bottom seismic data using an efficient fluid–solid coupled spectral-element solver

    Cao, Jian | Brossier, Romain | Górszczyk, Andrzej | Métivier, Ludovic | Virieux, Jean

    Geophysical Journal International, Vol. 229 (2022), Iss. 1 P.671

    https://doi.org/10.1093/gji/ggab484 [Citations: 13]
  256. Topology optimization of stationary fluid–structure interaction problems considering a natural frequency constraint for vortex-induced vibrations attenuation

    Siqueira, L.O. | Silva, K.E.S. | Silva, E.C.N. | Picelli, R.

    Finite Elements in Analysis and Design, Vol. 234 (2024), Iss. P.104137

    https://doi.org/10.1016/j.finel.2024.104137 [Citations: 0]
  257. Proceedings of the 1st International Conference on Numerical Modelling in Engineering

    A Coupled SPH-FEM for Fluid-Structures Interaction Problem with Free-Surface and Revetment Slope Thin-Walled Structures

    Truong-Thi, P. | Nguyen-Xuan, Hung | Abdel Wahab, Magd

    2019

    https://doi.org/10.1007/978-981-13-2405-5_16 [Citations: 0]
  258. Parametric Flutter Margin Analysis with CFD-Based Aerodynamics

    Roizner, Federico | Karpel, Moti | Carrese, Robert | Joseph, Nishit | Marzocca, Pier

    2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, (2018),

    https://doi.org/10.2514/6.2018-0704 [Citations: 0]
  259. A field‐split preconditioning technique for fluid‐structure interaction problems with applications in biomechanics

    Calandrini, Sara | Aulisa, Eugenio | Ke, Guoyi

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 36 (2020), Iss. 3

    https://doi.org/10.1002/cnm.3301 [Citations: 6]
  260. Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method

    He, Tao | Zhou, Dai | Han, Zhaolong | Tu, Jiahuang | Ma, Jin

    International Journal of Computational Fluid Dynamics, Vol. 28 (2014), Iss. 6-10 P.272

    https://doi.org/10.1080/10618562.2014.927057 [Citations: 31]
  261. A finite difference method with subsampling for immersed boundary simulations of the capsule dynamics with viscoelastic membranes

    Li, Ping | Zhang, Junfeng

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 35 (2019), Iss. 6

    https://doi.org/10.1002/cnm.3200 [Citations: 23]
  262. Fluid‐structure coupling of linear elastic model with compressible flow models

    Herty, Michael | Müller, Siegfried | Gerhard, Nils | Xiang, Gaoming | Wang, Bing

    International Journal for Numerical Methods in Fluids, Vol. 86 (2018), Iss. 6 P.365

    https://doi.org/10.1002/fld.4422 [Citations: 4]
  263. Simulations of free-surface flows with an embedded object by a coupling partitioned approach

    Wu, C.S. | Young, D.L.

    Computers & Fluids, Vol. 89 (2014), Iss. P.66

    https://doi.org/10.1016/j.compfluid.2013.10.030 [Citations: 9]
  264. A multifidelity method for locating aeroelastic flutter boundaries

    Marques, Alexandre N. | Lam, Rémi | Chaudhuri, Anirban | Opgenoord, Max M. | Willcox, Karen E.

    AIAA Scitech 2019 Forum, (2019),

    https://doi.org/10.2514/6.2019-0438 [Citations: 6]
  265. IMMERSED BOUNDARY METHODS FOR THERMOFLUIDS PROBLEMS

    Mittal, Rajat | Bhardwaj, Rajneesh

    Annual Review of Heat Transfer, Vol. 24 (2022), Iss. 1 P.33

    https://doi.org/10.1615/AnnualRevHeatTransfer.2022041888 [Citations: 12]
  266. Immersed Boundary Method

    Immersed Boundary Projection Methods

    Dorschner, Benedikt | Colonius, Tim

    2020

    https://doi.org/10.1007/978-981-15-3940-4_1 [Citations: 0]
  267. A weak-coupling immersed boundary method for fluid–structure interaction with low density ratio of solid to fluid

    Kim, Woojin | Lee, Injae | Choi, Haecheon

    Journal of Computational Physics, Vol. 359 (2018), Iss. P.296

    https://doi.org/10.1016/j.jcp.2017.12.045 [Citations: 38]
  268. Analysis of fluid-structure interaction in a directional permeability membrane in pressure-driven flow

    Bayat, Hamid | Krueger, Paul S | Willis, David A

    Engineering Research Express, Vol. 5 (2023), Iss. 1 P.015020

    https://doi.org/10.1088/2631-8695/acb6d0 [Citations: 0]
  269. Suppression of vortex-induced vibrations of a flexible riser by adding helical strakes

    Chen, Dong-yang | Abbas, Laith K. | Wang, Guo-ping | Rui, Xiao-ting | Lu, Wei-jie

    Journal of Hydrodynamics, Vol. 31 (2019), Iss. 3 P.622

    https://doi.org/10.1007/s42241-018-0078-6 [Citations: 11]
  270. Verification and convergence study of a spectral-element numerical methodology for fluid-structure interaction

    Xu, YiQin | Peet, Yulia T.

    Journal of Computational Physics: X, Vol. 10 (2021), Iss. P.100084

    https://doi.org/10.1016/j.jcpx.2021.100084 [Citations: 2]
  271. Three-dimensional vibrations of multilayered hollow spheres submerged in a complex fluid

    Wu, B. | Gan, Y. | Carrera, E. | Chen, W. Q.

    Journal of Fluid Mechanics, Vol. 879 (2019), Iss. P.682

    https://doi.org/10.1017/jfm.2019.681 [Citations: 11]
  272. Analysis of a linear 3D fluid–mesh–shell interaction problem

    Čanić, Sunčica | Galić, Marija | Ljulj, Matko | Muha, Boris | Tambača, Josip | Wang, Yifan

    Zeitschrift für angewandte Mathematik und Physik, Vol. 70 (2019), Iss. 2

    https://doi.org/10.1007/s00033-019-1087-1 [Citations: 6]
  273. Numerical simulation of the solitary wave interacting with an elastic structure using MPS-FEM coupled method

    Rao, Chengping | Zhang, Youlin | Wan, Decheng

    Journal of Marine Science and Application, Vol. 16 (2017), Iss. 4 P.395

    https://doi.org/10.1007/s11804-017-1430-x [Citations: 11]
  274. Research on innovative fluid-driven pipe-strut tensegrity structure

    Li, Shu | Samy, Akram | Yuan, Xingfei | Dong, Yongcan | Qiu, Zhendong

    Thin-Walled Structures, Vol. 203 (2024), Iss. P.112221

    https://doi.org/10.1016/j.tws.2024.112221 [Citations: 1]
  275. Finite difference seismic forward modeling method for fluid–solid coupled media with irregular seabed interface

    Li, Qingyang | Wu, Guochen | Wu, Jianlu | Duan, Peiran

    Journal of Geophysics and Engineering, Vol. 16 (2019), Iss. 1 P.198

    https://doi.org/10.1093/jge/gxy017 [Citations: 19]
  276. Analysis and assessment of a monolithic FSI finite element method

    Lozovskiy, Alexander | Olshanskii, Maxim A. | Vassilevski, Yuri V.

    Computers & Fluids, Vol. 179 (2019), Iss. P.277

    https://doi.org/10.1016/j.compfluid.2018.11.004 [Citations: 21]
  277. Induced Damping on Vibrating Circular Plates Submerged in Still Fluid

    Gascón-Pérez, Manuel | García-Fogeda, Pablo

    International Journal of Applied Mechanics, Vol. 07 (2015), Iss. 06 P.1550079

    https://doi.org/10.1142/S1758825115500799 [Citations: 8]
  278. A One-Continuum Approach for Mutual Interaction of Fluids and Structures

    Farahbakhsh, I. | Ghassemi, H. | Sabetghadam, F.

    Journal of Mechanics, Vol. 31 (2015), Iss. 6 P.745

    https://doi.org/10.1017/jmech.2015.30 [Citations: 5]
  279. Estudio numérico del comportamiento estructural del perfil del álabe de un rotor tipo Savonius implementando una geometría multielemento

    Gallo Jaramillo, Luis Antonio | Chica Arrieta, Edwin Lenin | Flórez Serrano, Elkin Gregorio

    Ingeniería, Vol. 28 (2023), Iss. 2 P.e19174

    https://doi.org/10.14483/23448393.19174 [Citations: 0]
  280. Prediction of steady flows passing fixed cylinders using deep learning

    Ozaki, Hiroto | Aoyagi, Takeshi

    Scientific Reports, Vol. 12 (2022), Iss. 1

    https://doi.org/10.1038/s41598-021-03651-8 [Citations: 9]
  281. An enhanced 3D data transfer method for fluid–structure interface by ISOMAP nonlinear space dimension reduction

    Li, Li-zhou | Zhang, Jun | Zhao, Jun-li | Yue, Zhu-feng

    Advances in Engineering Software, Vol. 83 (2015), Iss. P.19

    https://doi.org/10.1016/j.advengsoft.2015.01.009 [Citations: 4]
  282. Biofouling-resistant tubular fluidic devices with magneto-responsive dynamic walls

    Choi, Geonjun | Ko, Hangil | Jang, Hyejin | Hwang, Insol | Seong, Minho | Sun, Kahyun | Park, Hyun-Ha | Park, Tae-Eun | Kim, Jangho | Jeong, Hoon Eui

    Soft Matter, Vol. 17 (2021), Iss. 7 P.1715

    https://doi.org/10.1039/D0SM01979H [Citations: 6]
  283. Adaptive Mesh Refinement for Immersed Boundary Methods

    Vanella, Marcos | Posa, Antonio | Balaras, Elias

    Journal of Fluids Engineering, Vol. 136 (2014), Iss. 4

    https://doi.org/10.1115/1.4026415 [Citations: 37]
  284. Configuration optimization of shell-and-tube heat exchangers with helical baffles using multi-objective genetic algorithm based on fluid-structure interaction

    Wang, Simin | Xiao, Juan | Wang, Jiarui | Jian, Guanping | Wen, Jian | Zhang, Zaoxiao

    International Communications in Heat and Mass Transfer, Vol. 85 (2017), Iss. P.62

    https://doi.org/10.1016/j.icheatmasstransfer.2017.04.016 [Citations: 36]
  285. Immersed Boundary Method

    Direct Lagrangian Forcing Methods Based on Moving Least Squares

    Vanella, Marcos | Balaras, Elias

    2020

    https://doi.org/10.1007/978-981-15-3940-4_2 [Citations: 0]
  286. A two-way coupled simulation of moving solids in free-surface flows

    Wu, Tso-Ren | Chu, Chia-Ren | Huang, Chih-Jung | Wang, Chung-Yue | Chien, Ssu-Ying | Chen, Meng-Zhi

    Computers & Fluids, Vol. 100 (2014), Iss. P.347

    https://doi.org/10.1016/j.compfluid.2014.05.010 [Citations: 38]
  287. Advanced RBF Methods for Mapping Aerodynamic Loads onto Structures in High-Fidelity FSI Simulations

    Chiappa, Andrea | Lopez, Andrea | Groth, Corrado

    Fluids, Vol. 9 (2024), Iss. 6 P.137

    https://doi.org/10.3390/fluids9060137 [Citations: 0]
  288. A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction

    Kolahdouz, E.M. | Bhalla, A.P.S. | Scotten, L.N. | Craven, B.A. | Griffith, B.E.

    Journal of Computational Physics, Vol. 443 (2021), Iss. P.110442

    https://doi.org/10.1016/j.jcp.2021.110442 [Citations: 17]
  289. Acoustic-elastic coupled equation for ocean bottom seismic data elastic reverse time migration

    Yu, Pengfei | Geng, Jianhua | Li, Xiaobo | Wang, Chenlong

    GEOPHYSICS, Vol. 81 (2016), Iss. 5 P.S333

    https://doi.org/10.1190/geo2015-0535.1 [Citations: 28]
  290. Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures

    Zhao, Feihu | Vaughan, Ted J. | McNamara, Laoise M.

    Biomechanics and Modeling in Mechanobiology, Vol. 15 (2016), Iss. 3 P.561

    https://doi.org/10.1007/s10237-015-0710-0 [Citations: 76]
  291. Efficient FSI solvers for multiple-degrees-of-freedom flow-induced vibration of a rigid body

    Rajamuni, Methma M. | Thompson, Mark C. | Hourigan, Kerry

    Computers & Fluids, Vol. 196 (2020), Iss. P.104340

    https://doi.org/10.1016/j.compfluid.2019.104340 [Citations: 9]
  292. A highly efficient and accurate Lagrangian–Eulerian stabilized collocation method (LESCM) for the fluid–rigid body interaction problems with free surface flow

    Qian, Zhihao | Wang, Lihua | Zhang, Chuanzeng | Chen, Qiang

    Computer Methods in Applied Mechanics and Engineering, Vol. 398 (2022), Iss. P.115238

    https://doi.org/10.1016/j.cma.2022.115238 [Citations: 16]
  293. An Extension of Explicit Coupling for Fluid–Structure Interaction Problems

    Bukač, Martina

    Mathematics, Vol. 9 (2021), Iss. 15 P.1747

    https://doi.org/10.3390/math9151747 [Citations: 3]
  294. Simulation of fluid-structure interaction using the density smoothing B-spline material point method with a contact approach

    Sun, Zheng | Hua, Yunjun | Xu, Yunqing | Zhou, Xiaomin

    Computers & Mathematics with Applications, Vol. 176 (2024), Iss. P.525

    https://doi.org/10.1016/j.camwa.2024.11.008 [Citations: 0]
  295. Comparisons of two representative methods classified as immersed boundary and domain methods

    Wang, Shuangqiang | Zhang, Guiyong | Cai, Yunan | Yan, Boqian | Tang, Qian

    Engineering Analysis with Boundary Elements, Vol. 132 (2021), Iss. P.383

    https://doi.org/10.1016/j.enganabound.2021.08.015 [Citations: 6]
  296. A slender body theory for the motion of special Cosserat filaments in Stokes flow

    Garg, Mohit | Kumar, Ajeet

    Mathematics and Mechanics of Solids, Vol. 28 (2023), Iss. 3 P.692

    https://doi.org/10.1177/10812865221083323 [Citations: 6]
  297. Numerical investigation of the effect of aeration and hydroelasticity on impact loading and structural response for elastic plates during water entry

    Aghaei, Ali | Schimmels, Stefan | Schlurmann, Torsten | Hildebrandt, Arndt

    Ocean Engineering, Vol. 201 (2020), Iss. P.107098

    https://doi.org/10.1016/j.oceaneng.2020.107098 [Citations: 14]
  298. Fluid-structure Interactions

    Linear Solvers for Fluid-structure Interactions

    Richter, Thomas

    2017

    https://doi.org/10.1007/978-3-319-63970-3_7 [Citations: 0]
  299. Discrete multi-physics: A mesh-free model of blood flow in flexible biological valve including solid aggregate formation

    Ariane, Mostapha | Allouche, Mohamed Hatem | Bussone, Marco | Giacosa, Fausto | Bernard, Frédéric | Barigou, Mostafa | Alexiadis, Alessio | Gao, Zhong-Ke

    PLOS ONE, Vol. 12 (2017), Iss. 4 P.e0174795

    https://doi.org/10.1371/journal.pone.0174795 [Citations: 34]
  300. Full-waveform inversion in acoustic-elastic coupled media with irregular seafloor based on the generalized finite-difference method

    Li, Qingyang | Wu, Guochen | Jia, Zongfeng | Duan, Peiran

    GEOPHYSICS, Vol. 88 (2023), Iss. 2 P.T83

    https://doi.org/10.1190/geo2022-0408.1 [Citations: 5]
  301. Seismic behavior of concrete gravity dams

    Varughese, Jiji Anna | Nikithan, Sreelakshmi

    Advances in Computational Design, Vol. 1 (2016), Iss. 2 P.195

    https://doi.org/10.12989/acd.2016.1.2.195 [Citations: 3]
  302. Coupling multi-body dynamics and fluid dynamics to model lubricated spherical joints

    Askari, Ehsan | Flores, Paulo

    Archive of Applied Mechanics, Vol. 90 (2020), Iss. 9 P.2091

    https://doi.org/10.1007/s00419-020-01711-5 [Citations: 21]
  303. A semi-implicit direct forcing immersed boundary method for periodically moving immersed bodies: A Schur complement approach

    Sela, Rafi | Zemach, Efi | Feldman, Yuri

    Computer Methods in Applied Mechanics and Engineering, Vol. 373 (2021), Iss. P.113498

    https://doi.org/10.1016/j.cma.2020.113498 [Citations: 3]
  304. Development of Efficient Dynamic Aeroelasticity Model for High Fidelity Pointing Accuracy Assessment of VLBI Earth-Based Radio Antennas

    Nieto, Michelle Guzman | Thomas, Paul V. | ElSayed, Mostafa S. A. | Saad, Mohamed | Brown, Gary L. | Hilliard, Lawrence M.

    International Journal of Aeronautical and Space Sciences, Vol. 21 (2020), Iss. 3 P.693

    https://doi.org/10.1007/s42405-019-00238-6 [Citations: 4]
  305. Simulation of cavitating fluid–Structure interaction using SPH–FE method

    Kalateh, Farhoud | Koosheh, Ali

    Mathematics and Computers in Simulation, Vol. 173 (2020), Iss. P.51

    https://doi.org/10.1016/j.matcom.2020.01.019 [Citations: 11]
  306. Multiphysics in Porous Materials

    Thermohydromechanics

    Liu, Zhen

    2018

    https://doi.org/10.1007/978-3-319-93028-2_21 [Citations: 0]
  307. Research on numerical solution of one-sided monotonic function dichotomy

    Liu, Tianshi | Dong, Yangmei

    Journal of Physics: Conference Series, Vol. 2012 (2021), Iss. 1 P.012057

    https://doi.org/10.1088/1742-6596/2012/1/012057 [Citations: 1]
  308. A projection-based time-segmented reduced order model for fluid-structure interactions

    Zhai, Qijia | Zhang, Shiquan | Sun, Pengtao | Xie, Xiaoping

    Journal of Computational Physics, Vol. 520 (2025), Iss. P.113481

    https://doi.org/10.1016/j.jcp.2024.113481 [Citations: 0]
  309. An improved M-SPEM for modeling complex hydroelastic fluid-structure interaction problems

    Zhang, Zhilang | Shu, Chang | Liu, Yangyang | Liu, Wei | Khalid, Muhammad Saif Ullah

    Journal of Computational Physics, Vol. 488 (2023), Iss. P.112233

    https://doi.org/10.1016/j.jcp.2023.112233 [Citations: 16]
  310. A second-order accurate non-intrusive staggered scheme for the interaction of ultra-lightweight rigid bodies with fluid flow

    Kadapa, Chennakesava

    Ocean Engineering, Vol. 217 (2020), Iss. P.107940

    https://doi.org/10.1016/j.oceaneng.2020.107940 [Citations: 8]
  311. Multiphysics in Porous Materials

    Hydromechanics: Poroelasticity as a Simple Case

    Liu, Zhen

    2018

    https://doi.org/10.1007/978-3-319-93028-2_20 [Citations: 0]
  312. Fluid–Structure Interaction Simulation on Energy Harvesting From Vortical Flows by a Passive Heaving Foil

    Alan Wei, Zhenglun | Charlie Zheng, Zhongquan

    Journal of Fluids Engineering, Vol. 140 (2018), Iss. 1

    https://doi.org/10.1115/1.4037661 [Citations: 14]
  313. Finite Element Algorithm for Dynamic Thermoelasticity Coupling Problems and Application to Transient Response of Structure with Strong Aerothermodynamic Environment

    Li, Zhihui | Ma, Qiang | Cui, Junzhi

    Communications in Computational Physics, Vol. 20 (2016), Iss. 3 P.773

    https://doi.org/10.4208/cicp.270515.010216a [Citations: 25]
  314. Magnetic Miniature Soft Robot with Reprogrammable Drug‐Dispensing Functionalities: Toward Advanced Targeted Combination Therapy

    Yang, Zilin | Xu, Changyu | Lee, Jia Xin | Lum, Guo Zhan

    Advanced Materials, Vol. (2024), Iss.

    https://doi.org/10.1002/adma.202408750 [Citations: 0]
  315. Recent progress of lattice Boltzmann method and its applications in fluid-structure interaction

    Wang, Li | Liu, Zhengliang | Rajamuni, Methma

    Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 237 (2023), Iss. 11 P.2461

    https://doi.org/10.1177/09544062221077583 [Citations: 12]
  316. Experiment for validation of fluid‐structure interaction models and algorithms

    Hessenthaler, A. | Gaddum, N. R. | Holub, O. | Sinkus, R. | Röhrle, O. | Nordsletten, D.

    International Journal for Numerical Methods in Biomedical Engineering, Vol. 33 (2017), Iss. 9

    https://doi.org/10.1002/cnm.2848 [Citations: 22]
  317. Guaranteed master for interval-based cosimulation

    Le Coënt, Adrien | Alexandre dit Sandretto, Julien | Chapoutot, Alexandre

    Software and Systems Modeling, Vol. 20 (2021), Iss. 3 P.711

    https://doi.org/10.1007/s10270-020-00858-7 [Citations: 1]
  318. CUPyDO - An integrated Python environment for coupled fluid-structure simulations

    Thomas, D. | Cerquaglia, M.L. | Boman, R. | Economon, T.D. | Alonso, J.J. | Dimitriadis, G. | Terrapon, V.E.

    Advances in Engineering Software, Vol. 128 (2019), Iss. P.69

    https://doi.org/10.1016/j.advengsoft.2018.05.007 [Citations: 26]
  319. Study on pH-sensitive hydrogel micro-valves: A fluid–structure interaction approach

    Arbabi, Nasser | Baghani, Mostafa | Abdolahi, Jalal | Mazaheri, Hashem | Mosavi-Mashhadi, Mahmoud

    Journal of Intelligent Material Systems and Structures, Vol. 28 (2017), Iss. 12 P.1589

    https://doi.org/10.1177/1045389X16679020 [Citations: 30]
  320. Application of the inverse finite element method to design wind turbine blades

    Albanesi, Alejandro | Fachinotti, Victor | Peralta, Ignacio | Storti, Bruno | Gebhardt, Cristian

    Composite Structures, Vol. 161 (2017), Iss. P.160

    https://doi.org/10.1016/j.compstruct.2016.11.039 [Citations: 24]
  321. Predicting wind turbine blade loads and aeroelastic response using a coupled CFD–CSD method

    Yu, Dong Ok | Kwon, Oh Joon

    Renewable Energy, Vol. 70 (2014), Iss. P.184

    https://doi.org/10.1016/j.renene.2014.03.033 [Citations: 96]
  322. Preliminary Study on Mesh Stiffness Models for Fluid-structure Interaction Problems

    Priambudi Setyo Pratomo, Hariyo | Dwiputra Suprianto, Fandi | Sutrisno, Teng | Setyobudi, R.H. | Suprianto, F.D. | Mel, M. | Anne, O. | Soni, P. | Turkadze, T. | Jani, Y. | Vincēviča-Gaile, Z.

    E3S Web of Conferences, Vol. 130 (2019), Iss. P.01014

    https://doi.org/10.1051/e3sconf/201913001014 [Citations: 1]
  323. An IB-LBM implementation for fluid-solid interactions with an MLS approximation for implicit coupling

    Wang, Wen-Quan | Yan, Yan | Liu, G.R.

    Applied Mathematical Modelling, Vol. 62 (2018), Iss. P.638

    https://doi.org/10.1016/j.apm.2018.06.021 [Citations: 11]
  324. An extension of pseudo-3D vortex particle methods for aeroelastic interactions of thin-walled structures

    Chawdhury, Samir | Morgenthal, Guido

    Journal of Wind Engineering and Industrial Aerodynamics, Vol. 208 (2021), Iss. P.104391

    https://doi.org/10.1016/j.jweia.2020.104391 [Citations: 6]
  325. Modeling Food Processing Operations

    Different modelling and simulation approaches for food processing operations

    Rauh, C. | Delgado, A.

    2015

    https://doi.org/10.1016/B978-1-78242-284-6.00001-5 [Citations: 1]
  326. Caudal fin load characteristics with different motion patterns toward developing biorobotic fish-fin actuator

    Reddy, N. Srinivasa | Sen, Soumen | Kumar, Diwakar | Shome, Sankar Nath

    Proceedings of the 2015 Conference on Advances In Robotics, (2015), P.1

    https://doi.org/10.1145/2783449.2783467 [Citations: 2]
  327. Flexible Engineering Toward Green Aircraft

    Validation of High Fidelity Computational Methods for Aeronautical FSI Analyses

    Groth, Corrado | Biancolini, Marco Evangelos | Costa, Emiliano | Cella, Ubaldo

    2020

    https://doi.org/10.1007/978-3-030-36514-1_3 [Citations: 6]
  328. Unified Calculation Method that Treats a Fluid as an Elastic Material Based on the Finite Element Method

    Sugioka, Hideyuki

    Journal of the Physical Society of Japan, Vol. 84 (2015), Iss. 10 P.104601

    https://doi.org/10.7566/JPSJ.84.104601 [Citations: 0]
  329. A semi-implicit semi-Lagrangian method for simulating immersed boundary motion under high inertia and elasticity

    Park, Sangbeom | Bak, Soyoon | Kim, Philsu | Seol, Yunchang

    Applied Mathematics and Computation, Vol. 459 (2023), Iss. P.128269

    https://doi.org/10.1016/j.amc.2023.128269 [Citations: 1]
  330. A monolithic Lagrangian meshfree scheme for Fluid–Structure Interaction problems within the OTM framework

    Fan, Jiang | Liao, Huming | Ke, Renjie | Kucukal, Erdem | Gurkan, Umut A. | Shen, Xiuli | Lu, Jian | Li, Bo

    Computer Methods in Applied Mechanics and Engineering, Vol. 337 (2018), Iss. P.198

    https://doi.org/10.1016/j.cma.2018.03.031 [Citations: 11]
  331. Shape Recovery of Elastic Capsules from Shear Flow Induced Deformation

    Gounley, John | Peng, Yan

    Communications in Computational Physics, Vol. 16 (2014), Iss. 1 P.56

    https://doi.org/10.4208/cicp.220513.151113a [Citations: 4]
  332. Fluid–structure–control interaction simulation of flutter control problems

    Kaneko, Shigeki | Yoshimura, Shinobu

    Finite Elements in Analysis and Design, Vol. 203 (2022), Iss. P.103722

    https://doi.org/10.1016/j.finel.2021.103722 [Citations: 3]
  333. Tomo-PIV measurement of flow around an arbitrarily moving body with surface reconstruction

    Im, Sunghyuk | Jeon, Young Jin | Sung, Hyung Jin

    Experiments in Fluids, Vol. 56 (2015), Iss. 2

    https://doi.org/10.1007/s00348-015-1902-1 [Citations: 3]
  334. Simulation of microtubule–cytoplasm interaction revealed the importance of fluid dynamics in determining the organization of microtubules

    Murshed, Mohammad | Wei, Donghui | Gu, Ying | Wang, Jin

    Plant Direct, Vol. 7 (2023), Iss. 7

    https://doi.org/10.1002/pld3.505 [Citations: 0]
  335. Bending and Stretching of Soft Pores Enable Passive Control of Fluid Flows

    Louf, Jean-François | Knoblauch, Jan | Jensen, Kaare H.

    Physical Review Letters, Vol. 125 (2020), Iss. 9

    https://doi.org/10.1103/PhysRevLett.125.098101 [Citations: 9]
  336. Fluid-structure interaction simulations with a LES filtering approach in solids4Foam

    Girfoglio, Michele | Quaini, Annalisa | Rozza, Gianluigi

    Communications in Applied and Industrial Mathematics, Vol. 12 (2021), Iss. 1 P.13

    https://doi.org/10.2478/caim-2021-0002 [Citations: 9]
  337. A three-dimensional hybrid immersed smoothed point interpolation method for fluid-structure interactions

    Wang, Shuangqiang | Huang, Shuo | Zhang, Guiyong | Zhang, Bo | Yang, Borui | Yan, Boqian

    Ocean Engineering, Vol. 248 (2022), Iss. P.110838

    https://doi.org/10.1016/j.oceaneng.2022.110838 [Citations: 5]
  338. The modeling and simulation of Scholte wave propagation at fluid-solid interface

    Wang, Zhiliang | Huang, Rong | Song, Guojie

    Third International Meeting for Applied Geoscience & Energy Expanded Abstracts, (2023), P.1381

    https://doi.org/10.1190/image2023-3910305.1 [Citations: 0]
  339. Two-way fluid-structure interaction simulation for steady-state vibration of a slender rod using URANS and LES turbulence models

    Nazari, Tooraj | Rabiee, Ataollah | Kazeminejad, Hossein

    Nuclear Engineering and Technology, Vol. 51 (2019), Iss. 2 P.573

    https://doi.org/10.1016/j.net.2018.10.011 [Citations: 9]
  340. Computational Fluid Dynamic Analysis of a Floating Offshore Wind Turbine Experiencing Platform Pitching Motion

    Tran, Thanhtoan | Kim, Donghyun | Song, Jinseop

    Energies, Vol. 7 (2014), Iss. 8 P.5011

    https://doi.org/10.3390/en7085011 [Citations: 95]
  341. Hurricane-Induced Failure Mechanisms in Low-Rise Residential Buildings and Future Research Directions

    Moeini, Mohammad | Memari, Ali M.

    Natural Hazards Review, Vol. 24 (2023), Iss. 2

    https://doi.org/10.1061/NHREFO.NHENG-1544 [Citations: 9]
  342. Smoothed particle hydrodynamics and modal reduction for efficient fluid–structure interaction

    Schörgenhumer, Markus | Humer, Alexander

    Mathematical and Computer Modelling of Dynamical Systems, Vol. 24 (2018), Iss. 4 P.401

    https://doi.org/10.1080/13873954.2018.1488739 [Citations: 2]
  343. Dynamics of precision-guided projectile launch: fluid–structure interaction

    Verberne, P. | Meguid, S. A.

    Acta Mechanica, Vol. 232 (2021), Iss. 3 P.1147

    https://doi.org/10.1007/s00707-020-02821-5 [Citations: 5]
  344. New Frontiers of Multidisciplinary Research in STEAM-H (Science, Technology, Engineering, Agriculture, Mathematics, and Health)

    Viscous Interfacial Motion: Analysis and Computation

    Wang, Jin

    2014

    https://doi.org/10.1007/978-3-319-07755-0_16 [Citations: 0]
  345. Convergence analysis and error estimate of finite element method of a nonlinear fluid-structure interaction problem

    Zhao, Xin | Liu, Xin | Li, Jian

    AIMS Mathematics, Vol. 5 (2020), Iss. 5 P.5240

    https://doi.org/10.3934/math.2020337 [Citations: 1]
  346. A coupled hydro-structural design optimization for hydrokinetic turbines

    Kolekar, Nitin | Banerjee, Arindam

    Journal of Renewable and Sustainable Energy, Vol. 5 (2013), Iss. 5

    https://doi.org/10.1063/1.4826882 [Citations: 23]
  347. Fluid–Structure Interaction and Non-Fourier Effects in Coupled Electro-Thermo-Mechanical Models for Cardiac Ablation

    Singh, Sundeep | Melnik, Roderick

    Fluids, Vol. 6 (2021), Iss. 8 P.294

    https://doi.org/10.3390/fluids6080294 [Citations: 6]
  348. Modeling fluid–structure interaction using smoothed particle hydrodynamics and constitutively informed particle dynamics

    Paravastu, Phanindra | Vedantam, Srikanth

    Computers & Fluids, Vol. 276 (2024), Iss. P.106266

    https://doi.org/10.1016/j.compfluid.2024.106266 [Citations: 1]
  349. Multiphysics in Porous Materials

    Electrokinetics

    Liu, Zhen

    2018

    https://doi.org/10.1007/978-3-319-93028-2_22 [Citations: 1]
  350. The reduced immersed method for real-time fluid-elastic solid interaction and contact simulation

    Brandt, Christopher | Scandolo, Leonardo | Eisemann, Elmar | Hildebrandt, Klaus

    ACM Transactions on Graphics, Vol. 38 (2019), Iss. 6 P.1

    https://doi.org/10.1145/3355089.3356496 [Citations: 8]
  351. A local radial basis function collocation method for band structure computation of phononic crystals with scatterers of arbitrary geometry

    Zheng, H. | Yang, Z. | Zhang, Ch. | Tyrer, M.

    Applied Mathematical Modelling, Vol. 60 (2018), Iss. P.447

    https://doi.org/10.1016/j.apm.2018.03.023 [Citations: 68]
  352. An Evaluation of Pneumatic Conveyor Equipment Stability Through Fluid Structure Interface Analysis

    Kim, Chan-Woo | Yoo, Ji-In | Roh, Hyun-Woo | Choi, Sung-Dae | Hur, Jang-Wook

    Journal of the Korean Society of Manufacturing Process Engineers, Vol. 18 (2019), Iss. 9 P.94

    https://doi.org/10.14775/ksmpe.2019.18.9.094 [Citations: 2]
  353. Flow-Induced Flutter of Hanging Banners: Experiments and Validated Computational Models

    Dou, Zhongwang | Rips, Aaron | Welsh, Nathaniel | Seo, Jung-Hee | Mittal, Rajat

    2018 Fluid Dynamics Conference, (2018),

    https://doi.org/10.2514/6.2018-3081 [Citations: 0]
  354. Multi-hazard Approaches to Civil Infrastructure Engineering

    Wood-Frame Residential Buildings in Windstorms: Past Performance and New Directions

    van de Lindt, John W. | Dao, Thang N.

    2016

    https://doi.org/10.1007/978-3-319-29713-2_14 [Citations: 0]
  355. Numerical simulation of 2-D fluid-structure interaction with a tightly coupled solver and establishment of the mooring model

    Tsai, I-Chen | Li, Sing-Ya | Hsiao, Shih-Chun | Hsiao, Yu

    International Journal of Naval Architecture and Ocean Engineering, Vol. 13 (2021), Iss. P.433

    https://doi.org/10.1016/j.ijnaoe.2021.06.002 [Citations: 5]
  356. An immersed boundary fluid–structure interaction method for thin, highly compliant shell structures

    Boustani, Jonathan | Barad, Michael F. | Kiris, Cetin C. | Brehm, Christoph

    Journal of Computational Physics, Vol. 438 (2021), Iss. P.110369

    https://doi.org/10.1016/j.jcp.2021.110369 [Citations: 50]
  357. Proceedings of the International Conference on Advances in Computational Mechanics 2017

    Fluid–Structure Interaction Analysis of Revetment Structures—An Overview

    Vu-Huu, T. | Le-Thanh, C. | Phung-Van, Phuc | Nguyen-Xuan, Hung | Abdel-Wahab, M.

    2018

    https://doi.org/10.1007/978-981-10-7149-2_50 [Citations: 0]
  358. Fast Ewald summation for Stokesian particle suspensions

    Af Klinteberg, Ludvig | Tornberg, Anna‐Karin

    International Journal for Numerical Methods in Fluids, Vol. 76 (2014), Iss. 10 P.669

    https://doi.org/10.1002/fld.3953 [Citations: 32]
  359. Near-field seismoacoustic wave scattering due to an irregular interface: a unified framework

    Chen, Shaolin | Shen, Jirong | Zhang, Jiao | Cheng, Shulin | Sun, Jie

    Geophysical Journal International, Vol. 235 (2023), Iss. 3 P.2179

    https://doi.org/10.1093/gji/ggad358 [Citations: 1]
  360. An Edge-Based Smoothed Finite-Element Method for Vortex-Induced Vibration in Generalized Newtonian Fluids

    He, Tao | Zhang, Xu-Yan | Yao, Wen-Juan

    Journal of Engineering Mechanics, Vol. 148 (2022), Iss. 11

    https://doi.org/10.1061/(ASCE)EM.1943-7889.0002164 [Citations: 2]
  361. Towards an integrated framework for the risk assessment of coastal structures exposed to earthquake and tsunami hazards

    Reis, Cláudia | Lopes, Mário | Baptista, Maria Ana | Clain, Stéphane

    Resilient Cities and Structures, Vol. 1 (2022), Iss. 2 P.57

    https://doi.org/10.1016/j.rcns.2022.07.001 [Citations: 11]
  362. Nonlinear shock-induced flutter of a compliant panel using a fully coupled fluid-thermal-structure interaction model

    Shahriar, Al | Shoele, Kourosh

    Journal of Fluids and Structures, Vol. 124 (2024), Iss. P.104047

    https://doi.org/10.1016/j.jfluidstructs.2023.104047 [Citations: 1]
  363. Turbulence intensity effect on the axial-flow-induced vibration of an elastic cylinder

    Lu, Z.Y. | Wong, C.W. | Zhou, Y.

    Journal of Fluids and Structures, Vol. 99 (2020), Iss. P.103144

    https://doi.org/10.1016/j.jfluidstructs.2020.103144 [Citations: 7]
  364. Aerodynamic shape optimization of wind turbine rotor blades considering aeroelastic deformation effect

    Yu, Dong Ok | Lee, Hak Min | Kwon, Oh Joon

    Journal of Mechanical Science and Technology, Vol. 30 (2016), Iss. 2 P.705

    https://doi.org/10.1007/s12206-016-0126-5 [Citations: 7]
  365. Design and proof-of-concept of a micropillar-based microfluidic chip for trapping and culture of single cells

    Nguyen, Thu Hang | Thi, Ngoc Anh Nguyen | Thu, Hang Bui | Bui, Tung Thanh | Duc, Trinh Chu | Quang, Loc Do

    Microfluidics and Nanofluidics, Vol. 28 (2024), Iss. 5

    https://doi.org/10.1007/s10404-024-02734-y [Citations: 0]
  366. Efficient split-step schemes for fluid–structure interaction involving incompressible generalised Newtonian flows

    Schussnig, Richard | Pacheco, Douglas R.Q. | Fries, Thomas-Peter

    Computers & Structures, Vol. 260 (2022), Iss. P.106718

    https://doi.org/10.1016/j.compstruc.2021.106718 [Citations: 12]
  367. A numerical study of partitioned fluid‐structure interaction applied to a cantilever in incompressible turbulent flow

    Lorentzon, Johan | Revstedt, Johan

    International Journal for Numerical Methods in Engineering, Vol. 121 (2020), Iss. 5 P.806

    https://doi.org/10.1002/nme.6245 [Citations: 5]
  368. Fluid-thermal-structural analysis and structural optimization of spiral-wound heat exchanger

    Wang, Simin | Jian, Guanping | Xiao, Juan | Wen, Jian | Zhang, Zaoxiao | Tu, Jiyuan

    International Communications in Heat and Mass Transfer, Vol. 95 (2018), Iss. P.42

    https://doi.org/10.1016/j.icheatmasstransfer.2018.03.027 [Citations: 27]
  369. Detailed vibrational analysis of unbalanced morning glory spillways using coupled finite volume-finite element method

    Mirabi, Mohammad H. | Akbari, Hassan | Alembagheri, Mohammad

    SN Applied Sciences, Vol. 3 (2021), Iss. 1

    https://doi.org/10.1007/s42452-020-04006-0 [Citations: 4]
  370. Vibration analysis and numerical simulation of fluid–structure interaction phenomenon on a turbine blade

    Elhami, M. Reza | Najafi, Mohammad Reza | Tashakori Bafghi, Mohammad

    Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 43 (2021), Iss. 5

    https://doi.org/10.1007/s40430-021-02933-6 [Citations: 3]
  371. On numerical modeling of animal swimming and flight

    Deng, Hong-Bin | Xu, Yuan-Qing | Chen, Duan-Duan | Dai, Hu | Wu, Jian | Tian, Fang-Bao

    Computational Mechanics, Vol. 52 (2013), Iss. 6 P.1221

    https://doi.org/10.1007/s00466-013-0875-2 [Citations: 74]
  372. Convergence analysis of an iterative algorithm for a class of constrained dynamic problems

    Wang, Jin | Modnak, Chairat | Hou, Gene

    Applied Mathematics and Computation, Vol. 219 (2012), Iss. 3 P.1200

    https://doi.org/10.1016/j.amc.2012.07.030 [Citations: 0]
  373. Deposition of sticky spheres in channel flow: Modeling of surface coverage evolution requires accurate sphere-sphere collision hydrodynamics

    Lee, Young Ki | Porter, Christopher | Diamond, Scott L. | Crocker, John C. | Sinno, Talid

    Journal of Colloid and Interface Science, Vol. 530 (2018), Iss. P.383

    https://doi.org/10.1016/j.jcis.2018.06.097 [Citations: 14]
  374. Fully decoupled time-marching schemes for incompressible fluid/thin-walled structure interaction

    Fernández, Miguel A. | Landajuela, Mikel | Vidrascu, Marina

    Journal of Computational Physics, Vol. 297 (2015), Iss. P.156

    https://doi.org/10.1016/j.jcp.2015.05.009 [Citations: 24]
  375. Three-Dimensional Uncoupled Fluid Structure Analysis of Small Unmanned Aerial Vehicle Wing

    Phillips, Francis R. | White, Trent | Henry, Todd C. | Hrynuk, John T. | Hartl, Darren

    AIAA Journal, Vol. 60 (2022), Iss. 11 P.6404

    https://doi.org/10.2514/1.J061921 [Citations: 2]
  376. Numerical and experimental study on the drainage and collapse of a floating flexible bag structure

    Kristiansen, D. | Su, B. | Volent, Z.

    Journal of Fluids and Structures, Vol. 83 (2018), Iss. P.429

    https://doi.org/10.1016/j.jfluidstructs.2018.09.013 [Citations: 4]
  377. Investigation of shock/elastic obstacles interactions by means of a coupling technique

    Mouronval, A.-S. | Tie, B. | Hadjadj, A. | Moebs, G.

    Journal of Fluids and Structures, Vol. 84 (2019), Iss. P.345

    https://doi.org/10.1016/j.jfluidstructs.2018.10.008 [Citations: 4]
  378. Symmetrical fully coupled numerical model for efficient dam–reservoir interaction analysis in time domain

    Mirlohi J., S. Fahimeh | Namin, Masoud M.

    ISH Journal of Hydraulic Engineering, Vol. 30 (2024), Iss. 5 P.535

    https://doi.org/10.1080/09715010.2024.2372857 [Citations: 0]
  379. Modelling of hydro-mechanical processes in heterogeneous fracture intersections using a fictitious domain method with variational transfer operators

    von Planta, Cyrill | Vogler, Daniel | Chen, Xiaoqing | Nestola, Maria G. C. | Saar, Martin O. | Krause, Rolf

    Computational Geosciences, Vol. 24 (2020), Iss. 5 P.1799

    https://doi.org/10.1007/s10596-020-09936-7 [Citations: 6]
  380. A comprehensive review of water entry/exit of lifeboats and occupant safety

    Wang, Di | Fan, Ningge | Liang, Binyi | Chen, Gong | Chen, Shunhua

    Ocean Engineering, Vol. 310 (2024), Iss. P.118768

    https://doi.org/10.1016/j.oceaneng.2024.118768 [Citations: 0]
  381. Simulation of seismic waves in fluid-solid coupled thermoelastic media

    Yang, Sen | Wu, Guochen | Shan, Junzhen | Liu, Hongying

    GEOPHYSICS, Vol. 89 (2024), Iss. 5 P.T263

    https://doi.org/10.1190/geo2023-0448.1 [Citations: 0]
  382. Sharp interface immersed boundary methods and their application to vortex-induced vibration of a cylinder

    Griffith, Martin D. | Leontini, Justin S.

    Journal of Fluids and Structures, Vol. 72 (2017), Iss. P.38

    https://doi.org/10.1016/j.jfluidstructs.2017.04.008 [Citations: 27]
  383. Fluid–solid interaction on a thin platelet with high-velocity flow: vibration modelling and experiment

    Ziółkowski, Piotr J. | Ochrymiuk, Tomasz | Eremeyev, Victor A.

    Continuum Mechanics and Thermodynamics, Vol. 35 (2023), Iss. 4 P.1495

    https://doi.org/10.1007/s00161-022-01155-y [Citations: 1]
  384. Predicting the Adhesive Layer Thickness in Hybrid Joints Involving Pre-Tensioned Bolts

    Ricca, Frederico | Galindo-Rosales, Francisco J. | Akhavan-Safar, Alireza | da Silva, Lucas F. M. | Fkyerat, Thomas | Yokozeki, Koichi | Vallée, Till | Evers, Tobias

    Polymers, Vol. 16 (2024), Iss. 16 P.2284

    https://doi.org/10.3390/polym16162284 [Citations: 0]
  385. Numerical simulation of fluid–structure interaction with the volume penalization method

    Engels, Thomas | Kolomenskiy, Dmitry | Schneider, Kai | Sesterhenn, Jörn

    Journal of Computational Physics, Vol. 281 (2015), Iss. P.96

    https://doi.org/10.1016/j.jcp.2014.10.005 [Citations: 44]
  386. A Unified Momentum Equation Approach for Computing Flow-Induced Stresses in Structures with Arbitrarily-Shaped Stationary Boundaries

    Yeo, Haram | Ki, Hyungson

    Communications in Computational Physics, Vol. 22 (2017), Iss. 1 P.39

    https://doi.org/10.4208/cicp.OA-2016-0035 [Citations: 3]
  387. A Shear-Slip Mesh Update – Immersed Boundary Finite Element model for computational simulations of material transport in EPB tunnel boring machines

    Dang, Thai Son | Meschke, Günther

    Finite Elements in Analysis and Design, Vol. 142 (2018), Iss. P.1

    https://doi.org/10.1016/j.finel.2017.12.008 [Citations: 15]
  388. Fluid-Structure Interaction in Problems of Patient Specific Transcatheter Aortic Valve Implantation with and Without Paravalvular Leakage Complication

    Azriff Basri, Adi | Zuber, Mohammad | Illyani Basri, Ernnie | Shukri Zakaria, Muhammad | Fazli Abd Aziz, Ahmad | Tamagawa, Masaaki | Arifin Ahmad, Kamarul

    Fluid Dynamics & Materials Processing, Vol. 17 (2021), Iss. 3 P.531

    https://doi.org/10.32604/fdmp.2021.010925 [Citations: 9]
  389. Topology optimization of binary structures under design-dependent fluid-structure interaction loads

    Picelli, R. | Ranjbarzadeh, S. | Sivapuram, R. | Gioria, R. S. | Silva, E. C. N.

    Structural and Multidisciplinary Optimization, Vol. 62 (2020), Iss. 4 P.2101

    https://doi.org/10.1007/s00158-020-02598-0 [Citations: 40]
  390. Uncertainty assessment of coupled Digital Image Correlation and Particle Image Velocimetry for fluid-structure interaction wind tunnel experiments

    Marimon Giovannetti, L. | Banks, J. | Turnock, S.R. | Boyd, S.W.

    Journal of Fluids and Structures, Vol. 68 (2017), Iss. P.125

    https://doi.org/10.1016/j.jfluidstructs.2016.09.002 [Citations: 26]
  391. 3D acoustic-(visco)elastic coupled formulation and its spectral-element implementation on a Cartesian-based hexahedral mesh

    Cao, Jian | Brossier, Romain | Métivier, Ludovic

    SEG Technical Program Expanded Abstracts 2020, (2020), P.2643

    https://doi.org/10.1190/segam2020-3423098.1 [Citations: 4]
  392. A scalable framework for the partitioned solution of fluid–structure interaction problems

    Naseri, Alireza | Totounferoush, Amin | González, Ignacio | Mehl, Miriam | Pérez-Segarra, Carlos David

    Computational Mechanics, Vol. 66 (2020), Iss. 2 P.471

    https://doi.org/10.1007/s00466-020-01860-y [Citations: 9]
  393. An efficient finite-volume method to study the interaction of two-phase fluid flows with elastic structures

    Martínez-Ferrer, Pedro J. | Qian, Ling | Ma, Zhihua | Causon, Derek M. | Mingham, Clive G.

    Journal of Fluids and Structures, Vol. 83 (2018), Iss. P.54

    https://doi.org/10.1016/j.jfluidstructs.2018.08.019 [Citations: 20]
  394. A feature points-based method for data transfer in fluid-structure interactions

    DOU, Weiyuan | GUO, Sheng | ZHANG, Lele | ZHU, Yu | STICHEL, Sebastian

    International Journal of Mechanical Sciences, Vol. 234 (2022), Iss. P.107696

    https://doi.org/10.1016/j.ijmecsci.2022.107696 [Citations: 3]
  395. Partitioned Simulation of Fluid-Structure Interaction

    Degroote, Joris

    Archives of Computational Methods in Engineering, Vol. 20 (2013), Iss. 3 P.185

    https://doi.org/10.1007/s11831-013-9085-5 [Citations: 104]
  396. Analyses for simulation-based solution of fluid-structure interaction in percutaneous coronary intervention

    Wang, Yao | Fu, Zhuang | Fei, Jian

    Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 237 (2023), Iss. 15 P.3343

    https://doi.org/10.1177/09544062221150096 [Citations: 1]
  397. Regularity of a weak solution to a linear fluid-composite structure interaction problem

    Galić, Marija

    Glasnik Matematicki, Vol. 56 (2021), Iss. 2 P.407

    https://doi.org/10.3336/gm.56.2.11 [Citations: 0]
  398. Fluid-structure interaction of thin flexible bodies in multi-material multi-phase systems

    Vahab, Mehdi | Sussman, Mark | Shoele, Kourosh

    Journal of Computational Physics, Vol. 429 (2021), Iss. P.110008

    https://doi.org/10.1016/j.jcp.2020.110008 [Citations: 10]
  399. Full Eulerian finite element method of a phase field model for fluid–structure interaction problem

    Sun, Pengtao | Xu, Jinchao | Zhang, Lixiang

    Computers & Fluids, Vol. 90 (2014), Iss. P.1

    https://doi.org/10.1016/j.compfluid.2013.11.010 [Citations: 38]
  400. Fast Numerical Simulation of Focused Ultrasound Treatments During Respiratory Motion With Discontinuous Motion Boundaries

    Schwenke, Michael | Georgii, Joachim | Preusser, Tobias

    IEEE Transactions on Biomedical Engineering, Vol. 64 (2017), Iss. 7 P.1455

    https://doi.org/10.1109/TBME.2016.2619741 [Citations: 11]
  401. Development of a Complete Methodology to Reconstruct, Optimize, Analyze and Visualize Francis Turbine Runners

    Tsuzuki, Marcos S.G. | Vatanabe, Sandro L. | Castro, Emiliano G. | Silva, Emílio C.N. | Martins, Thiago C. | Taniguchi, Denis | Makiyama, Humberto S. | Sato, André K. | Gallo, Giulliano B. | Garcia, Marcos A.A. | Tiba, Hamilton

    IFAC-PapersOnLine, Vol. 48 (2015), Iss. 3 P.1900

    https://doi.org/10.1016/j.ifacol.2015.06.364 [Citations: 3]
  402. A semi-decoupled MAC scheme for the coupled fluid-poroelastic material interaction

    Wang, Xue | Rui, Hongxing

    Computers & Mathematics with Applications, Vol. 139 (2023), Iss. P.118

    https://doi.org/10.1016/j.camwa.2023.04.003 [Citations: 0]
  403. Numerical simulation of nonlinear sloshing in a prismatic tank by a Cartesian grid based three-dimensional multiphase flow model

    Xin, Jianjian | Chen, Zhenlei | Shi, Fan | Shi, Fulong | Jin, Qiu

    Ocean Engineering, Vol. 213 (2020), Iss. P.107629

    https://doi.org/10.1016/j.oceaneng.2020.107629 [Citations: 10]
  404. An Overview of the Combined Interface Boundary Condition Method for Fluid–Structure Interaction

    He, Tao | Zhang, Kai

    Archives of Computational Methods in Engineering, Vol. 24 (2017), Iss. 4 P.891

    https://doi.org/10.1007/s11831-016-9193-0 [Citations: 30]
  405. Deformation and fracture of cylindrical tubes under detonation loading: A review of numerical and experimental analyses

    Malekan, Mohammad | Khosravi, Ali | Cimini, Carlos A.

    International Journal of Pressure Vessels and Piping, Vol. 173 (2019), Iss. P.114

    https://doi.org/10.1016/j.ijpvp.2019.05.003 [Citations: 22]
  406. Fluid-structure interactions study on hydraulic structures: A review

    Zawawi, M. H. | Hassan, N. H. | Ramli, M. Z. | Zahari, N. M. | Radzi, M. R. M. | Saleha, A. | Salwa, A. | Sidek, L. M. | Muda, Z. C. | Kamaruddin, M. A.

    (2018) P.020244

    https://doi.org/10.1063/1.5066885 [Citations: 13]
  407. IB-WENO method for incompressible flow with elastic boundaries

    Cheng, Ziqiang | Liu, Yuan | Zhang, Mengping | Wang, Jin

    Journal of Computational and Applied Mathematics, Vol. 362 (2019), Iss. P.498

    https://doi.org/10.1016/j.cam.2018.10.028 [Citations: 4]
  408. A novel mono-physics particle-based approach for the simulation of cardiovascular fluid-structure interaction problems

    Monteleone, Alessandra | Di Leonardo, Sofia | Napoli, Enrico | Burriesci, Gaetano

    Computer Methods and Programs in Biomedicine, Vol. 245 (2024), Iss. P.108034

    https://doi.org/10.1016/j.cmpb.2024.108034 [Citations: 4]
  409. Efficient acoustic-elastic FD coupling method for anisotropic media

    Di Bartolo, Leandro | Manhisse, Rosário Romão | Dors, Cleberson

    Journal of Applied Geophysics, Vol. 174 (2020), Iss. P.103934

    https://doi.org/10.1016/j.jappgeo.2019.103934 [Citations: 5]
  410. A phase-field model for fluid–structure interaction

    Mokbel, Dominic | Abels, Helmut | Aland, Sebastian

    Journal of Computational Physics, Vol. 372 (2018), Iss. P.823

    https://doi.org/10.1016/j.jcp.2018.06.063 [Citations: 53]
  411. A symmetric implementation of pressure-based fluid–structure interaction for nonlinear dynamic analysis of arch dams

    Omidi, Omid | Lotfi, Vahid

    Journal of Fluids and Structures, Vol. 69 (2017), Iss. P.34

    https://doi.org/10.1016/j.jfluidstructs.2016.12.003 [Citations: 17]
  412. A fracture-propagation-control model for pipelines transportingCO2-rich mixtures including a new method for material-model calibration

    Nordhagen, H.O. | Munkejord, S.T. | Hammer, M. | Gruben, G. | Fourmeau, M. |