A Compressed Sensing Approach for Partial Differential Equations with Random Input Data

A Compressed Sensing Approach for Partial Differential Equations with Random Input Data

Year:    2012

Communications in Computational Physics, Vol. 12 (2012), Iss. 4 : pp. 919–954

Abstract

In this paper, a novel approach for quantifying the parametric uncertainty associated with a stochastic problem output is presented. As with Monte-Carlo and stochastic collocation methods, only point-wise evaluations of the stochastic output response surface are required allowing the use of legacy deterministic codes and precluding the need for any dedicated stochastic code to solve the uncertain problem of interest. The new approach differs from these standard methods in that it is based on ideas directly linked to the recently developed compressed sensing theory. The technique allows the retrieval of the modes that contribute most significantly to the approximation of the solution using a minimal amount of information. The generation of this information, via many solver calls, is almost always the bottle-neck of an uncertainty quantification procedure. If the stochastic model output has a reasonably compressible representation in the retained approximation basis, the proposed method makes the best use of the available information and retrieves the dominant modes. Uncertainty quantification of the solution of both a 2-D and 8-D stochastic Shallow Water problem is used to demonstrate the significant performance improvement of the new method, requiring up to several orders of magnitude fewer solver calls than the usual sparse grid-based Polynomial Chaos (Smolyak scheme) to achieve comparable approximation accuracy.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.151110.090911a

Communications in Computational Physics, Vol. 12 (2012), Iss. 4 : pp. 919–954

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    36

Keywords:   

  1. Handbook of Uncertainty Quantification

    Surrogate Models for Uncertainty Propagation and Sensitivity Analysis

    Sargsyan, Khachik

    2015

    https://doi.org/10.1007/978-3-319-11259-6_22-1 [Citations: 2]
  2. Divide and conquer: An incremental sparsity promoting compressive sampling approach for polynomial chaos expansions

    Alemazkoor, Negin | Meidani, Hadi

    Computer Methods in Applied Mechanics and Engineering, Vol. 318 (2017), Iss. P.937

    https://doi.org/10.1016/j.cma.2017.01.039 [Citations: 16]
  3. Sparse Recovery via ℓq-Minimization for Polynomial Chaos Expansions

    Guo, Ling | Liu, Yongle | Yan, Liang

    Numerical Mathematics: Theory, Methods and Applications, Vol. 10 (2017), Iss. 4 P.775

    https://doi.org/10.4208/nmtma.2017.0001 [Citations: 1]
  4. Infinite-Dimensional $$\ell ^1$$ ℓ 1 Minimization and Function Approximation from Pointwise Data

    Adcock, Ben

    Constructive Approximation, Vol. 45 (2017), Iss. 3 P.345

    https://doi.org/10.1007/s00365-017-9369-3 [Citations: 18]
  5. Sparse recovery in bounded Riesz systems with applications to numerical methods for PDEs

    Brugiapaglia, Simone | Dirksen, Sjoerd | Jung, Hans Christian | Rauhut, Holger

    Applied and Computational Harmonic Analysis, Vol. 53 (2021), Iss. P.231

    https://doi.org/10.1016/j.acha.2021.01.004 [Citations: 13]
  6. Data-Driven Method to Quantify Correlated Uncertainties

    Jung, Jeahan | Choi, Minseok

    IEEE Access, Vol. 11 (2023), Iss. P.50605

    https://doi.org/10.1109/ACCESS.2023.3277521 [Citations: 0]
  7. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies

    Hampton, Jerrad | Doostan, Alireza

    Journal of Computational Physics, Vol. 280 (2015), Iss. P.363

    https://doi.org/10.1016/j.jcp.2014.09.019 [Citations: 166]
  8. Solving Stochastic Optimal Control Problems by a Wiener Chaos Approach

    Huschto, Tony | Sager, Sebastian

    Vietnam Journal of Mathematics, Vol. 42 (2014), Iss. 1 P.83

    https://doi.org/10.1007/s10013-014-0060-8 [Citations: 11]
  9. Sparse polynomial chaos expansions via compressed sensing and D-optimal design

    Diaz, Paul | Doostan, Alireza | Hampton, Jerrad

    Computer Methods in Applied Mechanics and Engineering, Vol. 336 (2018), Iss. P.640

    https://doi.org/10.1016/j.cma.2018.03.020 [Citations: 75]
  10. Infinite-Dimensional Compressed Sensing and Function Interpolation

    Adcock, Ben

    Foundations of Computational Mathematics, Vol. 18 (2018), Iss. 3 P.661

    https://doi.org/10.1007/s10208-017-9350-3 [Citations: 28]
  11. Gradient-based optimization for regression in the functional tensor-train format

    Gorodetsky, Alex A. | Jakeman, John D.

    Journal of Computational Physics, Vol. 374 (2018), Iss. P.1219

    https://doi.org/10.1016/j.jcp.2018.08.010 [Citations: 20]
  12. Quantification of Uncertainty: Improving Efficiency and Technology

    A Compressive Spectral Collocation Method for the Diffusion Equation Under the Restricted Isometry Property

    Brugiapaglia, Simone

    2020

    https://doi.org/10.1007/978-3-030-48721-8_2 [Citations: 1]
  13. Enhancingℓ1-minimization estimates of polynomial chaos expansions using basis selection

    Jakeman, J.D. | Eldred, M.S. | Sargsyan, K.

    Journal of Computational Physics, Vol. 289 (2015), Iss. P.18

    https://doi.org/10.1016/j.jcp.2015.02.025 [Citations: 129]
  14. Handbook of Uncertainty Quantification

    Compressive Sampling Methods for Sparse Polynomial Chaos Expansions

    Hampton, Jerrad | Doostan, Alireza

    2017

    https://doi.org/10.1007/978-3-319-12385-1_67 [Citations: 4]
  15. INGOT-DR: an interpretable classifier for predicting drug resistance in M. tuberculosis

    Zabeti, Hooman | Dexter, Nick | Safari, Amir Hosein | Sedaghat, Nafiseh | Libbrecht, Maxwell | Chindelevitch, Leonid

    Algorithms for Molecular Biology, Vol. 16 (2021), Iss. 1

    https://doi.org/10.1186/s13015-021-00198-1 [Citations: 10]
  16. Handbook of Uncertainty Quantification

    Surrogate Models for Uncertainty Propagation and Sensitivity Analysis

    Sargsyan, Khachik

    2017

    https://doi.org/10.1007/978-3-319-12385-1_22 [Citations: 6]
  17. Global sensitivity analysis based on high-dimensional sparse surrogate construction

    Hu, Jun | Zhang, Shudao

    Applied Mathematics and Mechanics, Vol. 38 (2017), Iss. 6 P.797

    https://doi.org/10.1007/s10483-017-2208-8 [Citations: 5]
  18. Reconstructing high-dimensional Hilbert-valued functions via compressed sensing

    Dexter, Nick | Tran, Hoang | Webster, Clayton

    2019 13th International conference on Sampling Theory and Applications (SampTA), (2019), P.1

    https://doi.org/10.1109/SampTA45681.2019.9030842 [Citations: 0]
  19. Sensor placement strategy to inform decisions

    Mainini, Laura | Willcox, Karen E.

    18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, (2017),

    https://doi.org/10.2514/6.2017-3820 [Citations: 8]
  20. Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018

    Sparse Approximation of Multivariate Functions from Small Datasets Via Weighted Orthogonal Matching Pursuit

    Adcock, Ben | Brugiapaglia, Simone

    2020

    https://doi.org/10.1007/978-3-030-39647-3_49 [Citations: 1]
  21. Efficient uncertainty quantification of turbine blade leading edge film cooling using bi-fidelity combination of compressed sensing and Kriging

    Mohammadi-Ahmar, Akbar | Mohammadi, Arash | Raisee, Mehrdad

    International Journal of Heat and Mass Transfer, Vol. 162 (2020), Iss. P.120360

    https://doi.org/10.1016/j.ijheatmasstransfer.2020.120360 [Citations: 12]
  22. Compressed Sensing and its Applications

    Compressed Sensing Approaches for Polynomial Approximation of High-Dimensional Functions

    Adcock, Ben | Brugiapaglia, Simone | Webster, Clayton G.

    2017

    https://doi.org/10.1007/978-3-319-69802-1_3 [Citations: 17]
  23. Surrogate-assisted global sensitivity analysis: an overview

    Cheng, Kai | Lu, Zhenzhou | Ling, Chunyan | Zhou, Suting

    Structural and Multidisciplinary Optimization, Vol. 61 (2020), Iss. 3 P.1187

    https://doi.org/10.1007/s00158-019-02413-5 [Citations: 88]
  24. Uncertainty assessment of flood inundation modelling with a 1D/2D random field

    Huang, Y. | Qin, X. S.

    Journal of Hydroinformatics, Vol. 20 (2018), Iss. 5 P.1148

    https://doi.org/10.2166/hydro.2017.219 [Citations: 1]
  25. High-Dimensional Optimization and Probability

    Towards Optimal Sampling for Learning Sparse Approximations in High Dimensions

    Adcock, Ben | Cardenas, Juan M. | Dexter, Nick | Moraga, Sebastian

    2022

    https://doi.org/10.1007/978-3-031-00832-0_2 [Citations: 2]
  26. Uncertainty Management for Robust Industrial Design in Aeronautics

    Generalized Polynomial Chaos for Non-intrusive Uncertainty Quantification in Computational Fluid Dynamics

    Couaillier, Vincent | Savin, Éric

    2019

    https://doi.org/10.1007/978-3-319-77767-2_8 [Citations: 3]
  27. Basis adaptive sample efficient polynomial chaos (BASE-PC)

    Hampton, Jerrad | Doostan, Alireza

    Journal of Computational Physics, Vol. 371 (2018), Iss. P.20

    https://doi.org/10.1016/j.jcp.2018.03.035 [Citations: 30]
  28. Time‐dependent global sensitivity analysis with active subspaces for a lithium ion battery model

    Constantine, Paul G. | Doostan, Alireza

    Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. 10 (2017), Iss. 5 P.243

    https://doi.org/10.1002/sam.11347 [Citations: 30]
  29. Sparse Approximation using $\ell_1-\ell_2$ Minimization and Its Application to Stochastic Collocation

    Yan, Liang | Shin, Yeonjong | Xiu, Dongbin

    SIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 1 P.A229

    https://doi.org/10.1137/15M103947X [Citations: 35]
  30. Handbook of Uncertainty Quantification

    Compressive Sampling Methods for Sparse Polynomial Chaos Expansions

    Hampton, Jerrad | Doostan, Alireza

    2015

    https://doi.org/10.1007/978-3-319-11259-6_67-1 [Citations: 6]
  31. Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression

    Hampton, Jerrad | Doostan, Alireza

    Computer Methods in Applied Mechanics and Engineering, Vol. 290 (2015), Iss. P.73

    https://doi.org/10.1016/j.cma.2015.02.006 [Citations: 92]
  32. Numerical Analysis Meets Machine Learning

    Learning smooth functions in high dimensions

    Adcock, Ben | Brugiapaglia, Simone | Dexter, Nick | Moraga, Sebastian

    2024

    https://doi.org/10.1016/bs.hna.2024.05.001 [Citations: 1]
  33. A novel and efficient stochastic collocation method for estimating failure probability function in one-dimensional reduced space

    Chen, Zhuangbo | Lu, Zhenzhou | Feng, Kaixuan | Li, Hengchao | Yan, Yuhua

    Computers & Structures, Vol. 297 (2024), Iss. P.107365

    https://doi.org/10.1016/j.compstruc.2024.107365 [Citations: 0]
  34. Structural reliability analysis based on ensemble learning of surrogate models

    Cheng, Kai | Lu, Zhenzhou

    Structural Safety, Vol. 83 (2020), Iss. P.101905

    https://doi.org/10.1016/j.strusafe.2019.101905 [Citations: 88]
  35. Handbook of Uncertainty Quantification

    Stochastic Collocation Methods: A Survey

    Xiu, Dongbin

    2017

    https://doi.org/10.1007/978-3-319-12385-1_26 [Citations: 5]
  36. Closed-Loop Turbulence Control: Progress and Challenges

    Brunton, Steven L. | Noack, Bernd R.

    Applied Mechanics Reviews, Vol. 67 (2015), Iss. 5

    https://doi.org/10.1115/1.4031175 [Citations: 406]
  37. Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark

    Lüthen, Nora | Marelli, Stefano | Sudret, Bruno

    SIAM/ASA Journal on Uncertainty Quantification, Vol. 9 (2021), Iss. 2 P.593

    https://doi.org/10.1137/20M1315774 [Citations: 131]
  38. Sparse polynomial surrogates for non-intrusive, high-dimensional uncertainty quantification of aeroelastic computations

    Savin, Éric | Hantrais-Gervois, Jean-Luc

    Probabilistic Engineering Mechanics, Vol. 59 (2020), Iss. P.103027

    https://doi.org/10.1016/j.probengmech.2020.103027 [Citations: 3]
  39. Model order reduction for film-cooled applications under probabilistic conditions: sparse reconstruction of POD in combination with Kriging

    Mohammadi-Ahmar, Akbar | Mohammadi, Arash | Raisee, Mehrdad | Shimoyama, Koji

    Structural and Multidisciplinary Optimization, Vol. 65 (2022), Iss. 10

    https://doi.org/10.1007/s00158-022-03384-w [Citations: 3]
  40. A data-driven framework for sparsity-enhanced surrogates with arbitrary mutually dependent randomness

    Lei, Huan | Li, Jing | Gao, Peiyuan | Stinis, Panagiotis | Baker, Nathan A.

    Computer Methods in Applied Mechanics and Engineering, Vol. 350 (2019), Iss. P.199

    https://doi.org/10.1016/j.cma.2019.03.014 [Citations: 6]
  41. An efficient multifidelity ℓ1-minimization method for sparse polynomial chaos

    Salehi, Saeed | Raisee, Mehrdad | Cervantes, Michel J. | Nourbakhsh, Ahmad

    Computer Methods in Applied Mechanics and Engineering, Vol. 334 (2018), Iss. P.183

    https://doi.org/10.1016/j.cma.2018.01.055 [Citations: 42]
  42. Spectral likelihood expansions for Bayesian inference

    Nagel, Joseph B. | Sudret, Bruno

    Journal of Computational Physics, Vol. 309 (2016), Iss. P.267

    https://doi.org/10.1016/j.jcp.2015.12.047 [Citations: 27]
  43. Sparse polynomial surrogates for aerodynamic computations with random inputs

    Savin, Eric | Resmini, Andrea | Peter, Jacques E.

    18th AIAA Non-Deterministic Approaches Conference, (2016),

    https://doi.org/10.2514/6.2016-0433 [Citations: 6]
  44. A mixed ℓ1 regularization approach for sparse simultaneous approximation of parameterized PDEs

    Dexter, Nick | Tran, Hoang | Webster, Clayton

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 6 P.2025

    https://doi.org/10.1051/m2an/2019048 [Citations: 8]
  45. Efficient uncertainty quantification of stochastic CFD problems using sparse polynomial chaos and compressed sensing

    Salehi, Saeed | Raisee, Mehrdad | Cervantes, Michel J. | Nourbakhsh, Ahmad

    Computers & Fluids, Vol. 154 (2017), Iss. P.296

    https://doi.org/10.1016/j.compfluid.2017.06.016 [Citations: 36]
  46. Near-optimal learning of Banach-valued, high-dimensional functions via deep neural networks

    Adcock, Ben | Brugiapaglia, Simone | Dexter, Nick | Moraga, Sebastian

    Neural Networks, Vol. 181 (2025), Iss. P.106761

    https://doi.org/10.1016/j.neunet.2024.106761 [Citations: 0]
  47. Learning “best” kernels from data in Gaussian process regression. With application to aerodynamics

    Akian, J.-L. | Bonnet, L. | Owhadi, H. | Savin, É.

    Journal of Computational Physics, Vol. 470 (2022), Iss. P.111595

    https://doi.org/10.1016/j.jcp.2022.111595 [Citations: 14]
  48. Bi-fidelity reduced polynomial chaos expansion for uncertainty quantification

    Newberry, Felix | Hampton, Jerrad | Jansen, Kenneth | Doostan, Alireza

    Computational Mechanics, Vol. 69 (2022), Iss. 2 P.405

    https://doi.org/10.1007/s00466-021-02096-0 [Citations: 3]
  49. Handbook of Uncertainty Quantification

    Stochastic Collocation Methods: A Survey

    Xiu, Dongbin

    2015

    https://doi.org/10.1007/978-3-319-11259-6_26-1 [Citations: 5]
  50. Analysis of sparse recovery for Legendre expansions using envelope bound

    Tran, Hoang | Webster, Clayton

    Numerical Methods for Partial Differential Equations, Vol. 38 (2022), Iss. 6 P.2163

    https://doi.org/10.1002/num.22877 [Citations: 0]
  51. A heterogeneous stochastic FEM framework for elliptic PDEs

    Hou, Thomas Y. | Liu, Pengfei

    Journal of Computational Physics, Vol. 281 (2015), Iss. P.942

    https://doi.org/10.1016/j.jcp.2014.10.020 [Citations: 7]
  52. Quantification of Uncertainty: Improving Efficiency and Technology

    Surrogate-Based Ensemble Grouping Strategies for Embedded Sampling-Based Uncertainty Quantification

    D’Elia, M. | Phipps, E. | Rushdi, A. | Ebeida, M. S.

    2020

    https://doi.org/10.1007/978-3-030-48721-8_3 [Citations: 0]
  53. New Conditions on Stable Recovery of Weighted Sparse Signals via Weighted $$l_1$$ l 1 Minimization

    Huo, Haiye | Sun, Wenchang | Xiao, Li

    Circuits, Systems, and Signal Processing, Vol. 37 (2018), Iss. 7 P.2866

    https://doi.org/10.1007/s00034-017-0691-6 [Citations: 4]
  54. Learning "Best" Kernels from Data in Gaussian Process Regression. With Application to Aerodynamics

    Akian, Jean-Luc | Bonnet, Luc | OWHADI, HOUMAN | Savin, Eric

    SSRN Electronic Journal, Vol. (2022), Iss.

    https://doi.org/10.2139/ssrn.4158385 [Citations: 0]
  55. Active learning polynomial chaos expansion for reliability analysis by maximizing expected indicator function prediction error

    Cheng, Kai | Lu, Zhenzhou

    International Journal for Numerical Methods in Engineering, Vol. 121 (2020), Iss. 14 P.3159

    https://doi.org/10.1002/nme.6351 [Citations: 13]
  56. Stochastic Collocation Algorithms Using $l_1$-Minimization for Bayesian Solution of Inverse Problems

    Yan, Liang | Guo, Ling

    SIAM Journal on Scientific Computing, Vol. 37 (2015), Iss. 3 P.A1410

    https://doi.org/10.1137/140965144 [Citations: 27]
  57. Ensemble Grouping Strategies for Embedded Stochastic Collocation Methods Applied to Anisotropic Diffusion Problems

    D'Elia, M. | Edwards, H. C. | Hu, J. | Phipps, E. | Rajamanickam, S.

    SIAM/ASA Journal on Uncertainty Quantification, Vol. 6 (2018), Iss. 1 P.87

    https://doi.org/10.1137/16M1066324 [Citations: 5]
  58. A near-optimal sampling strategy for sparse recovery of polynomial chaos expansions

    Alemazkoor, Negin | Meidani, Hadi

    Journal of Computational Physics, Vol. 371 (2018), Iss. P.137

    https://doi.org/10.1016/j.jcp.2018.05.025 [Citations: 16]
  59. A weighted -minimization approach for sparse polynomial chaos expansions

    Peng, Ji | Hampton, Jerrad | Doostan, Alireza

    Journal of Computational Physics, Vol. 267 (2014), Iss. P.92

    https://doi.org/10.1016/j.jcp.2014.02.024 [Citations: 137]