Year: 2012
Communications in Computational Physics, Vol. 12 (2012), Iss. 4 : pp. 955–980
Abstract
The computation of compressible flows becomes more challenging when the Mach number has different orders of magnitude. When the Mach number is of order one, modern shock capturing methods are able to capture shocks and other complex structures with high numerical resolutions. However, if the Mach number is small, the acoustic waves lead to stiffness in time and excessively large numerical viscosity, thus demanding much smaller time step and mesh size than normally needed for incompressible flow simulation. In this paper, we develop an all-speed asymptotic preserving (AP) numerical scheme for the compressible isentropic Euler and Navier-Stokes equations that is uniformly stable and accurate for all Mach numbers. Our idea is to split the system into two parts: one involves a slow, nonlinear and conservative hyperbolic system adequate for the use of modern shock capturing methods and the other a linear hyperbolic system which contains the stiff acoustic dynamics, to be solved implicitly. This implicit part is reformulated into a standard pressure Poisson projection system and thus possesses sufficient structure for efficient fast Fourier transform solution techniques. In the zero Mach number limit, the scheme automatically becomes a projection method-like incompressible solver. We present numerical results in one and two dimensions in both compressible and incompressible regimes.
You do not have full access to this article.
Already a Subscriber? Sign in as an individual or via your institution
Journal Article Details
Publisher Name: Global Science Press
Language: English
DOI: https://doi.org/10.4208/cicp.250910.131011a
Communications in Computational Physics, Vol. 12 (2012), Iss. 4 : pp. 955–980
Published online: 2012-01
AMS Subject Headings: Global Science Press
Copyright: COPYRIGHT: © Global Science Press
Pages: 26
-
Parallel-in-Time High-Order Multiderivative IMEX Solvers
Schütz, Jochen | Seal, David C. | Zeifang, JonasJournal of Scientific Computing, Vol. 90 (2022), Iss. 1
https://doi.org/10.1007/s10915-021-01733-3 [Citations: 5] -
An asymptotic preserving semi-implicit multiderivative solver
Schütz, Jochen | Seal, David C.Applied Numerical Mathematics, Vol. 160 (2021), Iss. P.84
https://doi.org/10.1016/j.apnum.2020.09.004 [Citations: 10] -
A High-Order Method for Weakly Compressible Flows
Kaiser, Klaus | Schütz, JochenCommunications in Computational Physics, Vol. 22 (2017), Iss. 4 P.1150
https://doi.org/10.4208/cicp.OA-2017-0028 [Citations: 8] -
An entropy satisfying two-speed relaxation system for the barotropic Euler equations: application to the numerical approximation of low Mach number flows
Bouchut, François | Chalons, Christophe | Guisset, SébastienNumerische Mathematik, Vol. 145 (2020), Iss. 1 P.35
https://doi.org/10.1007/s00211-020-01111-5 [Citations: 6] -
Stability and consistency of a finite difference scheme for compressible viscous isentropic flow in multi-dimension
Hošek, Radim | She, BangweiJournal of Numerical Mathematics, Vol. 26 (2018), Iss. 3 P.111
https://doi.org/10.1515/jnma-2017-0010 [Citations: 17] -
Convergence and Error Estimates for a Finite Difference Scheme for the Multi-dimensional Compressible Navier–Stokes System
Mizerová, Hana | She, BangweiJournal of Scientific Computing, Vol. 84 (2020), Iss. 1
https://doi.org/10.1007/s10915-020-01278-x [Citations: 6] -
An all-speed relaxation scheme for gases and compressible materials
Abbate, Emanuela | Iollo, Angelo | Puppo, GabriellaJournal of Computational Physics, Vol. 351 (2017), Iss. P.1
https://doi.org/10.1016/j.jcp.2017.08.052 [Citations: 10] -
Congested Shallow Water Model: Trapped Air Pockets Modeling
Parisot, Martin
SIAM Journal on Scientific Computing, Vol. 45 (2023), Iss. 6 P.B828
https://doi.org/10.1137/22M1514908 [Citations: 0] -
Analysis of an asymptotic preserving low mach number accurate IMEX-RK scheme for the wave equation system
Arun, K.R. | Das Gupta, A.J. | Samantaray, S.Applied Mathematics and Computation, Vol. 411 (2021), Iss. P.126469
https://doi.org/10.1016/j.amc.2021.126469 [Citations: 0] -
High order semi-implicit weighted compact nonlinear scheme for the all-Mach isentropic Euler system
Jiang, Yanqun | Chen, Xun | Zhang, Xu | Xiong, Tao | Zhou, ShuguangAdvances in Aerodynamics, Vol. 2 (2020), Iss. 1
https://doi.org/10.1186/s42774-020-00052-9 [Citations: 5] -
An Efficient Semi-implicit Solver for Direct Numerical Simulation of Compressible Flows at All Speeds
Modesti, Davide | Pirozzoli, SergioJournal of Scientific Computing, Vol. 75 (2018), Iss. 1 P.308
https://doi.org/10.1007/s10915-017-0534-4 [Citations: 16] -
Implicit MAC scheme for compressible Navier–Stokes equations: low Mach asymptotic error estimates
Maltese, David | Novotný, AntonínIMA Journal of Numerical Analysis, Vol. 41 (2021), Iss. 1 P.122
https://doi.org/10.1093/imanum/drz072 [Citations: 2] -
Asymptotic-preserving schemes for multiscale physical problems
Jin, Shi
Acta Numerica, Vol. 31 (2022), Iss. P.415
https://doi.org/10.1017/S0962492922000010 [Citations: 30] -
A Low Mach Number IMEX Flux Splitting for the Level Set Ghost Fluid Method
Zeifang, Jonas | Beck, AndreaCommunications on Applied Mathematics and Computation, Vol. 5 (2023), Iss. 2 P.722
https://doi.org/10.1007/s42967-021-00137-2 [Citations: 1] -
On the Eulerian Large Eddy Simulation of Disperse Phase Flows: An Asymptotic Preserving Scheme for Small Stokes Number Flows
Chalons, C. | Massot, M. | Vié, A.Multiscale Modeling & Simulation, Vol. 13 (2015), Iss. 1 P.291
https://doi.org/10.1137/140960438 [Citations: 5] -
Asymptotic error analysis of an IMEX Runge–Kutta method
Kaiser, Klaus | Schütz, JochenJournal of Computational and Applied Mathematics, Vol. 343 (2018), Iss. P.139
https://doi.org/10.1016/j.cam.2018.04.044 [Citations: 0] -
A New Stable Splitting for the Isentropic Euler Equations
Kaiser, Klaus | Schütz, Jochen | Schöbel, Ruth | Noelle, SebastianJournal of Scientific Computing, Vol. 70 (2017), Iss. 3 P.1390
https://doi.org/10.1007/s10915-016-0286-6 [Citations: 17] -
All-Speed Numerical Methods for the Euler Equations via a Sequential Explicit Time Integration
Barsukow, Wasilij
Journal of Scientific Computing, Vol. 95 (2023), Iss. 2
https://doi.org/10.1007/s10915-023-02152-2 [Citations: 2] -
Theory, Numerics and Applications of Hyperbolic Problems II
Asymptotic Consistency of the RS-IMEX Scheme for the Low-Froude Shallow Water Equations: Analysis and Numerics
Zakerzadeh, Hamed
2018
https://doi.org/10.1007/978-3-319-91548-7_50 [Citations: 0] -
A novel approach to the characteristic splitting scheme for mildly compressible flows based on the weighted averaged flux method
Fiolitakis, A. | Pries, M.Journal of Computational Physics, Vol. 513 (2024), Iss. P.113197
https://doi.org/10.1016/j.jcp.2024.113197 [Citations: 0] -
Modelling of the convective plasma dynamics in the Sun: anelastic and Boussinesq MHD systems
Mentrelli, Andrea
Ricerche di Matematica, Vol. 68 (2019), Iss. 2 P.421
https://doi.org/10.1007/s11587-018-0416-6 [Citations: 1] -
A Blended Soundproof-to-Compressible Numerical Model for Small- to Mesoscale Atmospheric Dynamics
Benacchio, Tommaso | O’Neill, Warren P. | Klein, RupertMonthly Weather Review, Vol. 142 (2014), Iss. 12 P.4416
https://doi.org/10.1175/MWR-D-13-00384.1 [Citations: 20] -
Asymptotic analysis of the RS-IMEX scheme for the shallow water equations in one space dimension
Zakerzadeh, Hamed
ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 3 P.893
https://doi.org/10.1051/m2an/2019005 [Citations: 2] -
Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime
Dimarco, Giacomo | Loubère, Raphaël | Michel-Dansac, Victor | Vignal, Marie-HélèneJournal of Computational Physics, Vol. 372 (2018), Iss. P.178
https://doi.org/10.1016/j.jcp.2018.06.022 [Citations: 26] -
Asymptotic Preserving Low Mach Number Accurate IMEX Finite Volume Schemes for the Isentropic Euler Equations
Arun, K. R. | Samantaray, S.Journal of Scientific Computing, Vol. 82 (2020), Iss. 2
https://doi.org/10.1007/s10915-020-01138-8 [Citations: 10] -
An accurate front capturing scheme for tumor growth models with a free boundary limit
Liu, Jian-Guo | Tang, Min | Wang, Li | Zhou, ZhennanJournal of Computational Physics, Vol. 364 (2018), Iss. P.73
https://doi.org/10.1016/j.jcp.2018.03.013 [Citations: 18] -
Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations
Kučera, Václav | Lukáčová-Medvid’ová, Mária | Noelle, Sebastian | Schütz, JochenNumerische Mathematik, Vol. 150 (2022), Iss. 1 P.79
https://doi.org/10.1007/s00211-021-01240-5 [Citations: 3] -
IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows
Bispen, Georgij | Arun, K. R. | Lukáčová-Medvid’ová, Mária | Noelle, SebastianCommunications in Computational Physics, Vol. 16 (2014), Iss. 2 P.307
https://doi.org/10.4208/cicp.040413.160114a [Citations: 36] -
Development of numerical methods to simulate the melting of a thermal protection system
Peluchon, S. | Gallice, G. | Mieussens, L.Journal of Computational Physics, Vol. 448 (2022), Iss. P.110753
https://doi.org/10.1016/j.jcp.2021.110753 [Citations: 2] -
High order all-speed semi-implicit weighted compact nonlinear scheme for the isentropic Navier–Stokes equations
Jiang, Yan-Qun | Zhou, Shu-Guang | Zhang, Xu | Hu, Ying-GangJournal of Computational and Applied Mathematics, Vol. 411 (2022), Iss. P.114272
https://doi.org/10.1016/j.cam.2022.114272 [Citations: 3] -
Steady low Mach number flows: Identification of the spurious mode and filtering method
Jung, Jonathan | Perrier, VincentJournal of Computational Physics, Vol. 468 (2022), Iss. P.111462
https://doi.org/10.1016/j.jcp.2022.111462 [Citations: 4] -
A new stable splitting for singularly perturbed ODEs
Schütz, Jochen | Kaiser, KlausApplied Numerical Mathematics, Vol. 107 (2016), Iss. P.18
https://doi.org/10.1016/j.apnum.2016.04.004 [Citations: 10] -
Asymptotic-Preserving methods and multiscale models for plasma physics
Degond, Pierre | Deluzet, FabriceJournal of Computational Physics, Vol. 336 (2017), Iss. P.429
https://doi.org/10.1016/j.jcp.2017.02.009 [Citations: 37] -
Handbook of Numerical Methods for Hyperbolic Problems - Applied and Modern Issues
Asymptotic-Preserving Schemes for Multiscale Hyperbolic and Kinetic Equations
Hu, J. | Jin, S. | Li, Q.2017
https://doi.org/10.1016/bs.hna.2016.09.001 [Citations: 19] -
Implicit-Explicit Multistep Methods for Hyperbolic Systems With Multiscale Relaxation
Albi, Giacomo | Dimarco, Giacomo | Pareschi, LorenzoSIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 4 P.A2402
https://doi.org/10.1137/19M1303290 [Citations: 13] -
Numerical simulation of a compressible two-layer model: A first attempt with an implicit–explicit splitting scheme
Demay, Charles | Bourdarias, Christian | de Meux, Benoît de Laage | Gerbi, Stéphane | Hérard, Jean-MarcJournal of Computational and Applied Mathematics, Vol. 346 (2019), Iss. P.357
https://doi.org/10.1016/j.cam.2018.06.027 [Citations: 3] -
Large Time Step and Asymptotic Preserving Numerical Schemes for the Gas Dynamics Equations with Source Terms
Chalons, Christophe | Girardin, Mathieu | Kokh, SamuelSIAM Journal on Scientific Computing, Vol. 35 (2013), Iss. 6 P.A2874
https://doi.org/10.1137/130908671 [Citations: 43] -
Convergence of a finite volume scheme for the compressible Navier–Stokes system
Feireisl, Eduard | Lukáčová-Medvid’ová, Mária | Mizerová, Hana | She, BangweiESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 6 P.1957
https://doi.org/10.1051/m2an/2019043 [Citations: 21] -
An all Mach number scheme for visco-resistive magnetically-dominated MHD flows
Dematté, Riccardo | Farmakalides, Alexander A. | Millmore, Stephen | Nikiforakis, NikosJournal of Computational Physics, Vol. 514 (2024), Iss. P.113229
https://doi.org/10.1016/j.jcp.2024.113229 [Citations: 0] -
Asymptotic Transition from Kinetic to Adiabatic Electrons along Magnetic Field Lines
Cecco, Alexandra De | Deluzet, Fabrice | Negulescu, Claudia | Possanner, StefanMultiscale Modeling & Simulation, Vol. 15 (2017), Iss. 1 P.309
https://doi.org/10.1137/15M1043686 [Citations: 5] -
High order well-balanced asymptotic preserving finite difference WENO schemes for the shallow water equations in all Froude numbers
Huang, Guanlan | Xing, Yulong | Xiong, TaoJournal of Computational Physics, Vol. 463 (2022), Iss. P.111255
https://doi.org/10.1016/j.jcp.2022.111255 [Citations: 13] -
An asymptotic-preserving method for a relaxation of the Navier–Stokes–Korteweg equations
Chertock, Alina | Degond, Pierre | Neusser, JochenJournal of Computational Physics, Vol. 335 (2017), Iss. P.387
https://doi.org/10.1016/j.jcp.2017.01.030 [Citations: 10] -
An Asymptotic Preserving and Energy Stable Scheme for the Barotropic Euler System in the Incompressible Limit
Arun, K. R. | Ghorai, Rahuldev | Kar, MainakJournal of Scientific Computing, Vol. 97 (2023), Iss. 3
https://doi.org/10.1007/s10915-023-02389-x [Citations: 2] -
Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere
Cell-Centered Finite Volume Methods
Feng, Xueshang
2020
https://doi.org/10.1007/978-981-13-9081-4_2 [Citations: 1] -
Droplet Interactions and Spray Processes
An Investigation of Different Splitting Techniques for the Isentropic Euler Equations
Zeifang, Jonas | Kaiser, Klaus | Schütz, Jochen | Massa, Francesco Carlo | Beck, Andrea2020
https://doi.org/10.1007/978-3-030-33338-6_4 [Citations: 1] -
MAESTROeX: A Massively Parallel Low Mach Number Astrophysical Solver
Fan, Duoming | Nonaka, Andrew | Almgren, Ann S. | Harpole, Alice | Zingale, MichaelThe Astrophysical Journal, Vol. 887 (2019), Iss. 2 P.212
https://doi.org/10.3847/1538-4357/ab4f75 [Citations: 15] -
Low Mach number preconditioning techniques for Roe-type and HLLC-type methods for a two-phase compressible flow model
Pelanti, Marica
Applied Mathematics and Computation, Vol. 310 (2017), Iss. P.112
https://doi.org/10.1016/j.amc.2017.04.014 [Citations: 16] -
An efficient second order all Mach finite volume solver for the compressible Navier–Stokes equations
Boscheri, Walter | Dimarco, Giacomo | Tavelli, MaurizioComputer Methods in Applied Mechanics and Engineering, Vol. 374 (2021), Iss. P.113602
https://doi.org/10.1016/j.cma.2020.113602 [Citations: 27] -
Efficient high-order discontinuous Galerkin computations of low Mach number flows
Zeifang, Jonas | Kaiser, Klaus | Beck, Andrea | Schütz, Jochen | Munz, Claus-DieterCommunications in Applied Mathematics and Computational Science, Vol. 13 (2018), Iss. 2 P.243
https://doi.org/10.2140/camcos.2018.13.243 [Citations: 11] -
A time‐staggered second order conservative time scheme for variable density flow
Amino, Hector | Flageul, Cédric | Benhamadouche, Sofiane | Tiselj, Iztok | Carissimo, Bertrand | Ferrand, MartinInternational Journal for Numerical Methods in Fluids, Vol. 94 (2022), Iss. 12 P.1964
https://doi.org/10.1002/fld.5116 [Citations: 1] -
A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations
Boscheri, Walter | Dimarco, Giacomo | Loubère, Raphaël | Tavelli, Maurizio | Vignal, Marie-HélèneJournal of Computational Physics, Vol. 415 (2020), Iss. P.109486
https://doi.org/10.1016/j.jcp.2020.109486 [Citations: 34] -
Simulations of non homogeneous viscous flows with incompressibility constraints
Calgaro, Caterina | Creusé, Emmanuel | Goudon, Thierry | Krell, StellaMathematics and Computers in Simulation, Vol. 137 (2017), Iss. P.201
https://doi.org/10.1016/j.matcom.2016.11.006 [Citations: 5] -
Linearly implicit all Mach number shock capturing schemes for the Euler equations
Avgerinos, Stavros | Bernard, Florian | Iollo, Angelo | Russo, GiovanniJournal of Computational Physics, Vol. 393 (2019), Iss. P.278
https://doi.org/10.1016/j.jcp.2019.04.020 [Citations: 23] -
An explicitness-preserving IMEX-split multiderivative method
Theodosiou, Eleni | Schütz, Jochen | Seal, DavidComputers & Mathematics with Applications, Vol. 158 (2024), Iss. P.139
https://doi.org/10.1016/j.camwa.2023.12.040 [Citations: 1] -
Study on Influence of Environmental Parameters on Dynamic Stall Characteristics of Wind Turbine Blades
Wang, Long | Wang, Cheng | Sun, LunyeJournal of The Institution of Engineers (India): Series C, Vol. 101 (2020), Iss. 3 P.441
https://doi.org/10.1007/s40032-020-00565-8 [Citations: 0] -
Numerical simulation of time-dependent non-Newtonian compressible fluid flow in porous media: Finite element method and time integration approach
Ahmad, Salman | Tiamiyu, Abd'gafar TundeInternational Communications in Heat and Mass Transfer, Vol. 159 (2024), Iss. P.107934
https://doi.org/10.1016/j.icheatmasstransfer.2024.107934 [Citations: 3] -
A Well-Balanced Asymptotic Preserving Scheme for the Two-Dimensional Shallow Water Equations Over Irregular Bottom Topography
Liu, Xin
SIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 5 P.B1136
https://doi.org/10.1137/19M1262590 [Citations: 5] -
Study of an asymptotic preserving scheme for the quasi neutral Euler–Boltzmann model in the drift regime
Badsi, Mehdi
ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 2 P.701
https://doi.org/10.1051/m2an/2018070 [Citations: 1] -
A Well-Balanced Asymptotic Preserving Scheme for the Two-Dimensional Rotating Shallow Water Equations with Nonflat Bottom Topography
Kurganov, Alexander | Liu, Yongle | Lukáčová-Medviďová, MáriaSIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 3 P.A1655
https://doi.org/10.1137/21M141573X [Citations: 4] -
A Drift-Asymptotic scheme for a fluid description of plasmas in strong magnetic fields
Deluzet, Fabrice | Ottaviani, Maurizio | Possanner, StefanComputer Physics Communications, Vol. 219 (2017), Iss. P.164
https://doi.org/10.1016/j.cpc.2017.05.018 [Citations: 2] -
A robust implicit–explicit acoustic-transport splitting scheme for two-phase flows
Peluchon, S. | Gallice, G. | Mieussens, L.Journal of Computational Physics, Vol. 339 (2017), Iss. P.328
https://doi.org/10.1016/j.jcp.2017.03.019 [Citations: 10] -
An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes
Chalons, Christophe | Girardin, Mathieu | Kokh, SamuelCommunications in Computational Physics, Vol. 20 (2016), Iss. 1 P.188
https://doi.org/10.4208/cicp.260614.061115a [Citations: 49] -
Flux Splitting for Stiff Equations: A Notion on Stability
Schütz, Jochen | Noelle, SebastianJournal of Scientific Computing, Vol. 64 (2015), Iss. 2 P.522
https://doi.org/10.1007/s10915-014-9942-x [Citations: 12] -
A low-diffusion self-adaptive flux-vector splitting approach for compressible flows
Iampietro, D. | Daude, F. | Galon, P.Computers & Fluids, Vol. 206 (2020), Iss. P.104586
https://doi.org/10.1016/j.compfluid.2020.104586 [Citations: 4] -
High Order Semi-implicit WENO Schemes for All-Mach Full Euler System of Gas Dynamics
Boscarino, Sebastiano | Qiu, Jingmei | Russo, Giovanni | Xiong, TaoSIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 2 P.B368
https://doi.org/10.1137/21M1424433 [Citations: 17] -
An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces
Liu, Xin | Chertock, Alina | Kurganov, AlexanderJournal of Computational Physics, Vol. 391 (2019), Iss. P.259
https://doi.org/10.1016/j.jcp.2019.04.035 [Citations: 15] -
All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics
Boscarino, S. | Russo, G. | Scandurra, L.Journal of Scientific Computing, Vol. 77 (2018), Iss. 2 P.850
https://doi.org/10.1007/s10915-018-0731-9 [Citations: 56] -
High Order Asymptotic Preserving and Classical Semi-implicit RK Schemes for the Euler–Poisson System in the Quasineutral Limit
Arun, K. R. | Crouseilles, N. | Samantaray, S.Journal of Scientific Computing, Vol. 100 (2024), Iss. 1
https://doi.org/10.1007/s10915-024-02577-3 [Citations: 0] -
An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes
Chalons, Christophe | Girardin, Mathieu | Kokh, SamuelJournal of Computational Physics, Vol. 335 (2017), Iss. P.885
https://doi.org/10.1016/j.jcp.2017.01.017 [Citations: 27] -
A comparative study of numerical methods for approximating the solutions of a macroscopic automated-vehicle traffic flow model
Titakis, George | Karafyllis, Iasson | Theodosis, Dionysios | Papamichail, Ioannis | Papageorgiou, MarkosComputers & Mathematics with Applications, Vol. 176 (2024), Iss. P.469
https://doi.org/10.1016/j.camwa.2024.11.007 [Citations: 0] -
Existence of global entropy solutions to the isentropic Euler equations with geometric effects
Lu, Yun-guang | Gu, FengNonlinear Analysis: Real World Applications, Vol. 14 (2013), Iss. 2 P.990
https://doi.org/10.1016/j.nonrwa.2012.08.012 [Citations: 7] -
Numerical Approximation of Hyperbolic Systems of Conservation Laws
The Case of Multidimensional Systems
Godlewski, Edwige | Raviart, Pierre-Arnaud2021
https://doi.org/10.1007/978-1-0716-1344-3_5 [Citations: 0] -
A Mach-sensitive splitting approach for Euler-like systems
Iampietro, D. | Daude, F. | Galon, P. | Hérard, J.-M.ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 52 (2018), Iss. 1 P.207
https://doi.org/10.1051/m2an/2017063 [Citations: 9] -
A Numerical Scheme for the Compressible Low-Mach Number Regime of Ideal Fluid Dynamics
Barsukow, Wasilij | Edelmann, Philipp V. F. | Klingenberg, Christian | Miczek, Fabian | Röpke, Friedrich K.Journal of Scientific Computing, Vol. 72 (2017), Iss. 2 P.623
https://doi.org/10.1007/s10915-017-0372-4 [Citations: 26] -
High order well-balanced asymptotic preserving IMEX RKDG schemes for the two-dimensional nonlinear shallow water equations
Xie, Xian | Dong, Haiyun | Li, MaojunJournal of Computational Physics, Vol. 510 (2024), Iss. P.113092
https://doi.org/10.1016/j.jcp.2024.113092 [Citations: 0] -
A Mach-sensitive implicit–explicit scheme adapted to compressible multi-scale flows
Iampietro, D. | Daude, F. | Galon, P. | Hérard, J.-M.Journal of Computational and Applied Mathematics, Vol. 340 (2018), Iss. P.122
https://doi.org/10.1016/j.cam.2018.02.019 [Citations: 10] -
High order semi-implicit weighted compact nonlinear scheme for the full compressible Euler system at all Mach numbers
Jiang, Yan-Qun | Zhou, Shu-Guang | Hu, Ying-Gang | Zhang, XuComputers & Mathematics with Applications, Vol. 109 (2022), Iss. P.125
https://doi.org/10.1016/j.camwa.2022.01.020 [Citations: 2] -
Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation
Bispen, Georgij | Lukáčová-Medvid'ová, Mária | Yelash, LeonidJournal of Computational Physics, Vol. 335 (2017), Iss. P.222
https://doi.org/10.1016/j.jcp.2017.01.020 [Citations: 51] -
Compressible solver for two-phase flows with sharp interface and capillary effects preserving accuracy in the low Mach regime
Zou, Ziqiang | Grenier, Nicolas | Kokh, Samuel | Tenaud, Christian | Audit, EdouardJournal of Computational Physics, Vol. 448 (2022), Iss. P.110735
https://doi.org/10.1016/j.jcp.2021.110735 [Citations: 1] -
High Order Structure-Preserving Finite Difference WENO Schemes for MHD Equations with Gravitation in all Sonic Mach Numbers
Chen, Wei | Wu, Kailiang | Xiong, TaoJournal of Scientific Computing, Vol. 99 (2024), Iss. 2
https://doi.org/10.1007/s10915-024-02492-7 [Citations: 0] -
A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics
Noelle, S. | Bispen, G. | Arun, K. R. | Lukáčová-Medviďová, M. | Munz, C.-D.SIAM Journal on Scientific Computing, Vol. 36 (2014), Iss. 6 P.B989
https://doi.org/10.1137/120895627 [Citations: 63] -
An Asymptotic-Preserving all-speed scheme for the Euler and Navier–Stokes equations
Cordier, Floraine | Degond, Pierre | Kumbaro, AnelaJournal of Computational Physics, Vol. 231 (2012), Iss. 17 P.5685
https://doi.org/10.1016/j.jcp.2012.04.025 [Citations: 116] -
An asymptotic preserving scheme on staggered grids for the barotropic Euler system in low Mach regimes
Goudon, Thierry | Llobell, Julie | Minjeaud, SebastianNumerical Methods for Partial Differential Equations, Vol. 36 (2020), Iss. 5 P.1098
https://doi.org/10.1002/num.22466 [Citations: 5] -
Asymptotic Preserving Error Estimates for Numerical Solutions of Compressible Navier--Stokes Equations in the Low Mach Number Regime
Feireisl, Eduard | Lukáčová-Medviďová, Mária | Nečasová, Šárka | Novotný, Antonín | She, BangweiMultiscale Modeling & Simulation, Vol. 16 (2018), Iss. 1 P.150
https://doi.org/10.1137/16M1094233 [Citations: 17] -
Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit
Dimarco, Giacomo | Loubère, Raphaël | Vignal, Marie-HélèneSIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 5 P.A2099
https://doi.org/10.1137/16M1069274 [Citations: 43] -
A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system
Boscarino, Sebastiano | Qiu, Jing-Mei | Russo, Giovanni | Xiong, TaoJournal of Computational Physics, Vol. 392 (2019), Iss. P.594
https://doi.org/10.1016/j.jcp.2019.04.057 [Citations: 34]