An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations

An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations

Year:    2012

Communications in Computational Physics, Vol. 12 (2012), Iss. 4 : pp. 955–980

Abstract

The computation of compressible flows becomes more challenging when the Mach number has different orders of magnitude. When the Mach number is of order one, modern shock capturing methods are able to capture shocks and other complex structures with high numerical resolutions. However, if the Mach number is small, the acoustic waves lead to stiffness in time and excessively large numerical viscosity, thus demanding much smaller time step and mesh size than normally needed for incompressible flow simulation. In this paper, we develop an all-speed asymptotic preserving (AP) numerical scheme for the compressible isentropic Euler and Navier-Stokes equations that is uniformly stable and accurate for all Mach numbers. Our idea is to split the system into two parts: one involves a slow, nonlinear and conservative hyperbolic system adequate for the use of modern shock capturing methods and the other a linear hyperbolic system which contains the stiff acoustic dynamics, to be solved implicitly. This implicit part is reformulated into a standard pressure Poisson projection system and thus possesses sufficient structure for efficient fast Fourier transform solution techniques. In the zero Mach number limit, the scheme automatically becomes a projection method-like incompressible solver. We present numerical results in one and two dimensions in both compressible and incompressible regimes.

You do not have full access to this article.

Already a Subscriber? Sign in as an individual or via your institution

Journal Article Details

Publisher Name:    Global Science Press

Language:    English

DOI:    https://doi.org/10.4208/cicp.250910.131011a

Communications in Computational Physics, Vol. 12 (2012), Iss. 4 : pp. 955–980

Published online:    2012-01

AMS Subject Headings:    Global Science Press

Copyright:    COPYRIGHT: © Global Science Press

Pages:    26

Keywords:   

  1. Parallel-in-Time High-Order Multiderivative IMEX Solvers

    Schütz, Jochen | Seal, David C. | Zeifang, Jonas

    Journal of Scientific Computing, Vol. 90 (2022), Iss. 1

    https://doi.org/10.1007/s10915-021-01733-3 [Citations: 5]
  2. An asymptotic preserving semi-implicit multiderivative solver

    Schütz, Jochen | Seal, David C.

    Applied Numerical Mathematics, Vol. 160 (2021), Iss. P.84

    https://doi.org/10.1016/j.apnum.2020.09.004 [Citations: 10]
  3. A High-Order Method for Weakly Compressible Flows

    Kaiser, Klaus | Schütz, Jochen

    Communications in Computational Physics, Vol. 22 (2017), Iss. 4 P.1150

    https://doi.org/10.4208/cicp.OA-2017-0028 [Citations: 8]
  4. An entropy satisfying two-speed relaxation system for the barotropic Euler equations: application to the numerical approximation of low Mach number flows

    Bouchut, François | Chalons, Christophe | Guisset, Sébastien

    Numerische Mathematik, Vol. 145 (2020), Iss. 1 P.35

    https://doi.org/10.1007/s00211-020-01111-5 [Citations: 6]
  5. Stability and consistency of a finite difference scheme for compressible viscous isentropic flow in multi-dimension

    Hošek, Radim | She, Bangwei

    Journal of Numerical Mathematics, Vol. 26 (2018), Iss. 3 P.111

    https://doi.org/10.1515/jnma-2017-0010 [Citations: 17]
  6. Convergence and Error Estimates for a Finite Difference Scheme for the Multi-dimensional Compressible Navier–Stokes System

    Mizerová, Hana | She, Bangwei

    Journal of Scientific Computing, Vol. 84 (2020), Iss. 1

    https://doi.org/10.1007/s10915-020-01278-x [Citations: 6]
  7. An all-speed relaxation scheme for gases and compressible materials

    Abbate, Emanuela | Iollo, Angelo | Puppo, Gabriella

    Journal of Computational Physics, Vol. 351 (2017), Iss. P.1

    https://doi.org/10.1016/j.jcp.2017.08.052 [Citations: 10]
  8. Congested Shallow Water Model: Trapped Air Pockets Modeling

    Parisot, Martin

    SIAM Journal on Scientific Computing, Vol. 45 (2023), Iss. 6 P.B828

    https://doi.org/10.1137/22M1514908 [Citations: 0]
  9. Analysis of an asymptotic preserving low mach number accurate IMEX-RK scheme for the wave equation system

    Arun, K.R. | Das Gupta, A.J. | Samantaray, S.

    Applied Mathematics and Computation, Vol. 411 (2021), Iss. P.126469

    https://doi.org/10.1016/j.amc.2021.126469 [Citations: 0]
  10. High order semi-implicit weighted compact nonlinear scheme for the all-Mach isentropic Euler system

    Jiang, Yanqun | Chen, Xun | Zhang, Xu | Xiong, Tao | Zhou, Shuguang

    Advances in Aerodynamics, Vol. 2 (2020), Iss. 1

    https://doi.org/10.1186/s42774-020-00052-9 [Citations: 5]
  11. An Efficient Semi-implicit Solver for Direct Numerical Simulation of Compressible Flows at All Speeds

    Modesti, Davide | Pirozzoli, Sergio

    Journal of Scientific Computing, Vol. 75 (2018), Iss. 1 P.308

    https://doi.org/10.1007/s10915-017-0534-4 [Citations: 16]
  12. Implicit MAC scheme for compressible Navier–Stokes equations: low Mach asymptotic error estimates

    Maltese, David | Novotný, Antonín

    IMA Journal of Numerical Analysis, Vol. 41 (2021), Iss. 1 P.122

    https://doi.org/10.1093/imanum/drz072 [Citations: 2]
  13. Asymptotic-preserving schemes for multiscale physical problems

    Jin, Shi

    Acta Numerica, Vol. 31 (2022), Iss. P.415

    https://doi.org/10.1017/S0962492922000010 [Citations: 30]
  14. A Low Mach Number IMEX Flux Splitting for the Level Set Ghost Fluid Method

    Zeifang, Jonas | Beck, Andrea

    Communications on Applied Mathematics and Computation, Vol. 5 (2023), Iss. 2 P.722

    https://doi.org/10.1007/s42967-021-00137-2 [Citations: 1]
  15. On the Eulerian Large Eddy Simulation of Disperse Phase Flows: An Asymptotic Preserving Scheme for Small Stokes Number Flows

    Chalons, C. | Massot, M. | Vié, A.

    Multiscale Modeling & Simulation, Vol. 13 (2015), Iss. 1 P.291

    https://doi.org/10.1137/140960438 [Citations: 5]
  16. Asymptotic error analysis of an IMEX Runge–Kutta method

    Kaiser, Klaus | Schütz, Jochen

    Journal of Computational and Applied Mathematics, Vol. 343 (2018), Iss. P.139

    https://doi.org/10.1016/j.cam.2018.04.044 [Citations: 0]
  17. A New Stable Splitting for the Isentropic Euler Equations

    Kaiser, Klaus | Schütz, Jochen | Schöbel, Ruth | Noelle, Sebastian

    Journal of Scientific Computing, Vol. 70 (2017), Iss. 3 P.1390

    https://doi.org/10.1007/s10915-016-0286-6 [Citations: 17]
  18. All-Speed Numerical Methods for the Euler Equations via a Sequential Explicit Time Integration

    Barsukow, Wasilij

    Journal of Scientific Computing, Vol. 95 (2023), Iss. 2

    https://doi.org/10.1007/s10915-023-02152-2 [Citations: 2]
  19. Theory, Numerics and Applications of Hyperbolic Problems II

    Asymptotic Consistency of the RS-IMEX Scheme for the Low-Froude Shallow Water Equations: Analysis and Numerics

    Zakerzadeh, Hamed

    2018

    https://doi.org/10.1007/978-3-319-91548-7_50 [Citations: 0]
  20. A novel approach to the characteristic splitting scheme for mildly compressible flows based on the weighted averaged flux method

    Fiolitakis, A. | Pries, M.

    Journal of Computational Physics, Vol. 513 (2024), Iss. P.113197

    https://doi.org/10.1016/j.jcp.2024.113197 [Citations: 0]
  21. Modelling of the convective plasma dynamics in the Sun: anelastic and Boussinesq MHD systems

    Mentrelli, Andrea

    Ricerche di Matematica, Vol. 68 (2019), Iss. 2 P.421

    https://doi.org/10.1007/s11587-018-0416-6 [Citations: 1]
  22. A Blended Soundproof-to-Compressible Numerical Model for Small- to Mesoscale Atmospheric Dynamics

    Benacchio, Tommaso | O’Neill, Warren P. | Klein, Rupert

    Monthly Weather Review, Vol. 142 (2014), Iss. 12 P.4416

    https://doi.org/10.1175/MWR-D-13-00384.1 [Citations: 20]
  23. Asymptotic analysis of the RS-IMEX scheme for the shallow water equations in one space dimension

    Zakerzadeh, Hamed

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 3 P.893

    https://doi.org/10.1051/m2an/2019005 [Citations: 2]
  24. Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime

    Dimarco, Giacomo | Loubère, Raphaël | Michel-Dansac, Victor | Vignal, Marie-Hélène

    Journal of Computational Physics, Vol. 372 (2018), Iss. P.178

    https://doi.org/10.1016/j.jcp.2018.06.022 [Citations: 26]
  25. Asymptotic Preserving Low Mach Number Accurate IMEX Finite Volume Schemes for the Isentropic Euler Equations

    Arun, K. R. | Samantaray, S.

    Journal of Scientific Computing, Vol. 82 (2020), Iss. 2

    https://doi.org/10.1007/s10915-020-01138-8 [Citations: 10]
  26. An accurate front capturing scheme for tumor growth models with a free boundary limit

    Liu, Jian-Guo | Tang, Min | Wang, Li | Zhou, Zhennan

    Journal of Computational Physics, Vol. 364 (2018), Iss. P.73

    https://doi.org/10.1016/j.jcp.2018.03.013 [Citations: 18]
  27. Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations

    Kučera, Václav | Lukáčová-Medvid’ová, Mária | Noelle, Sebastian | Schütz, Jochen

    Numerische Mathematik, Vol. 150 (2022), Iss. 1 P.79

    https://doi.org/10.1007/s00211-021-01240-5 [Citations: 3]
  28. IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows

    Bispen, Georgij | Arun, K. R. | Lukáčová-Medvid’ová, Mária | Noelle, Sebastian

    Communications in Computational Physics, Vol. 16 (2014), Iss. 2 P.307

    https://doi.org/10.4208/cicp.040413.160114a [Citations: 36]
  29. Development of numerical methods to simulate the melting of a thermal protection system

    Peluchon, S. | Gallice, G. | Mieussens, L.

    Journal of Computational Physics, Vol. 448 (2022), Iss. P.110753

    https://doi.org/10.1016/j.jcp.2021.110753 [Citations: 2]
  30. High order all-speed semi-implicit weighted compact nonlinear scheme for the isentropic Navier–Stokes equations

    Jiang, Yan-Qun | Zhou, Shu-Guang | Zhang, Xu | Hu, Ying-Gang

    Journal of Computational and Applied Mathematics, Vol. 411 (2022), Iss. P.114272

    https://doi.org/10.1016/j.cam.2022.114272 [Citations: 3]
  31. Steady low Mach number flows: Identification of the spurious mode and filtering method

    Jung, Jonathan | Perrier, Vincent

    Journal of Computational Physics, Vol. 468 (2022), Iss. P.111462

    https://doi.org/10.1016/j.jcp.2022.111462 [Citations: 4]
  32. A new stable splitting for singularly perturbed ODEs

    Schütz, Jochen | Kaiser, Klaus

    Applied Numerical Mathematics, Vol. 107 (2016), Iss. P.18

    https://doi.org/10.1016/j.apnum.2016.04.004 [Citations: 10]
  33. Asymptotic-Preserving methods and multiscale models for plasma physics

    Degond, Pierre | Deluzet, Fabrice

    Journal of Computational Physics, Vol. 336 (2017), Iss. P.429

    https://doi.org/10.1016/j.jcp.2017.02.009 [Citations: 37]
  34. Handbook of Numerical Methods for Hyperbolic Problems - Applied and Modern Issues

    Asymptotic-Preserving Schemes for Multiscale Hyperbolic and Kinetic Equations

    Hu, J. | Jin, S. | Li, Q.

    2017

    https://doi.org/10.1016/bs.hna.2016.09.001 [Citations: 19]
  35. Implicit-Explicit Multistep Methods for Hyperbolic Systems With Multiscale Relaxation

    Albi, Giacomo | Dimarco, Giacomo | Pareschi, Lorenzo

    SIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 4 P.A2402

    https://doi.org/10.1137/19M1303290 [Citations: 13]
  36. Numerical simulation of a compressible two-layer model: A first attempt with an implicit–explicit splitting scheme

    Demay, Charles | Bourdarias, Christian | de Meux, Benoît de Laage | Gerbi, Stéphane | Hérard, Jean-Marc

    Journal of Computational and Applied Mathematics, Vol. 346 (2019), Iss. P.357

    https://doi.org/10.1016/j.cam.2018.06.027 [Citations: 3]
  37. Large Time Step and Asymptotic Preserving Numerical Schemes for the Gas Dynamics Equations with Source Terms

    Chalons, Christophe | Girardin, Mathieu | Kokh, Samuel

    SIAM Journal on Scientific Computing, Vol. 35 (2013), Iss. 6 P.A2874

    https://doi.org/10.1137/130908671 [Citations: 43]
  38. Convergence of a finite volume scheme for the compressible Navier–Stokes system

    Feireisl, Eduard | Lukáčová-Medvid’ová, Mária | Mizerová, Hana | She, Bangwei

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 6 P.1957

    https://doi.org/10.1051/m2an/2019043 [Citations: 21]
  39. An all Mach number scheme for visco-resistive magnetically-dominated MHD flows

    Dematté, Riccardo | Farmakalides, Alexander A. | Millmore, Stephen | Nikiforakis, Nikos

    Journal of Computational Physics, Vol. 514 (2024), Iss. P.113229

    https://doi.org/10.1016/j.jcp.2024.113229 [Citations: 0]
  40. Asymptotic Transition from Kinetic to Adiabatic Electrons along Magnetic Field Lines

    Cecco, Alexandra De | Deluzet, Fabrice | Negulescu, Claudia | Possanner, Stefan

    Multiscale Modeling & Simulation, Vol. 15 (2017), Iss. 1 P.309

    https://doi.org/10.1137/15M1043686 [Citations: 5]
  41. High order well-balanced asymptotic preserving finite difference WENO schemes for the shallow water equations in all Froude numbers

    Huang, Guanlan | Xing, Yulong | Xiong, Tao

    Journal of Computational Physics, Vol. 463 (2022), Iss. P.111255

    https://doi.org/10.1016/j.jcp.2022.111255 [Citations: 13]
  42. An asymptotic-preserving method for a relaxation of the Navier–Stokes–Korteweg equations

    Chertock, Alina | Degond, Pierre | Neusser, Jochen

    Journal of Computational Physics, Vol. 335 (2017), Iss. P.387

    https://doi.org/10.1016/j.jcp.2017.01.030 [Citations: 10]
  43. An Asymptotic Preserving and Energy Stable Scheme for the Barotropic Euler System in the Incompressible Limit

    Arun, K. R. | Ghorai, Rahuldev | Kar, Mainak

    Journal of Scientific Computing, Vol. 97 (2023), Iss. 3

    https://doi.org/10.1007/s10915-023-02389-x [Citations: 2]
  44. Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere

    Cell-Centered Finite Volume Methods

    Feng, Xueshang

    2020

    https://doi.org/10.1007/978-981-13-9081-4_2 [Citations: 1]
  45. Droplet Interactions and Spray Processes

    An Investigation of Different Splitting Techniques for the Isentropic Euler Equations

    Zeifang, Jonas | Kaiser, Klaus | Schütz, Jochen | Massa, Francesco Carlo | Beck, Andrea

    2020

    https://doi.org/10.1007/978-3-030-33338-6_4 [Citations: 1]
  46. MAESTROeX: A Massively Parallel Low Mach Number Astrophysical Solver

    Fan, Duoming | Nonaka, Andrew | Almgren, Ann S. | Harpole, Alice | Zingale, Michael

    The Astrophysical Journal, Vol. 887 (2019), Iss. 2 P.212

    https://doi.org/10.3847/1538-4357/ab4f75 [Citations: 15]
  47. Low Mach number preconditioning techniques for Roe-type and HLLC-type methods for a two-phase compressible flow model

    Pelanti, Marica

    Applied Mathematics and Computation, Vol. 310 (2017), Iss. P.112

    https://doi.org/10.1016/j.amc.2017.04.014 [Citations: 16]
  48. An efficient second order all Mach finite volume solver for the compressible Navier–Stokes equations

    Boscheri, Walter | Dimarco, Giacomo | Tavelli, Maurizio

    Computer Methods in Applied Mechanics and Engineering, Vol. 374 (2021), Iss. P.113602

    https://doi.org/10.1016/j.cma.2020.113602 [Citations: 27]
  49. Efficient high-order discontinuous Galerkin computations of low Mach number flows

    Zeifang, Jonas | Kaiser, Klaus | Beck, Andrea | Schütz, Jochen | Munz, Claus-Dieter

    Communications in Applied Mathematics and Computational Science, Vol. 13 (2018), Iss. 2 P.243

    https://doi.org/10.2140/camcos.2018.13.243 [Citations: 11]
  50. A time‐staggered second order conservative time scheme for variable density flow

    Amino, Hector | Flageul, Cédric | Benhamadouche, Sofiane | Tiselj, Iztok | Carissimo, Bertrand | Ferrand, Martin

    International Journal for Numerical Methods in Fluids, Vol. 94 (2022), Iss. 12 P.1964

    https://doi.org/10.1002/fld.5116 [Citations: 1]
  51. A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations

    Boscheri, Walter | Dimarco, Giacomo | Loubère, Raphaël | Tavelli, Maurizio | Vignal, Marie-Hélène

    Journal of Computational Physics, Vol. 415 (2020), Iss. P.109486

    https://doi.org/10.1016/j.jcp.2020.109486 [Citations: 34]
  52. Simulations of non homogeneous viscous flows with incompressibility constraints

    Calgaro, Caterina | Creusé, Emmanuel | Goudon, Thierry | Krell, Stella

    Mathematics and Computers in Simulation, Vol. 137 (2017), Iss. P.201

    https://doi.org/10.1016/j.matcom.2016.11.006 [Citations: 5]
  53. Linearly implicit all Mach number shock capturing schemes for the Euler equations

    Avgerinos, Stavros | Bernard, Florian | Iollo, Angelo | Russo, Giovanni

    Journal of Computational Physics, Vol. 393 (2019), Iss. P.278

    https://doi.org/10.1016/j.jcp.2019.04.020 [Citations: 23]
  54. An explicitness-preserving IMEX-split multiderivative method

    Theodosiou, Eleni | Schütz, Jochen | Seal, David

    Computers & Mathematics with Applications, Vol. 158 (2024), Iss. P.139

    https://doi.org/10.1016/j.camwa.2023.12.040 [Citations: 1]
  55. Study on Influence of Environmental Parameters on Dynamic Stall Characteristics of Wind Turbine Blades

    Wang, Long | Wang, Cheng | Sun, Lunye

    Journal of The Institution of Engineers (India): Series C, Vol. 101 (2020), Iss. 3 P.441

    https://doi.org/10.1007/s40032-020-00565-8 [Citations: 0]
  56. Numerical simulation of time-dependent non-Newtonian compressible fluid flow in porous media: Finite element method and time integration approach

    Ahmad, Salman | Tiamiyu, Abd'gafar Tunde

    International Communications in Heat and Mass Transfer, Vol. 159 (2024), Iss. P.107934

    https://doi.org/10.1016/j.icheatmasstransfer.2024.107934 [Citations: 3]
  57. A Well-Balanced Asymptotic Preserving Scheme for the Two-Dimensional Shallow Water Equations Over Irregular Bottom Topography

    Liu, Xin

    SIAM Journal on Scientific Computing, Vol. 42 (2020), Iss. 5 P.B1136

    https://doi.org/10.1137/19M1262590 [Citations: 5]
  58. Study of an asymptotic preserving scheme for the quasi neutral Euler–Boltzmann model in the drift regime

    Badsi, Mehdi

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 53 (2019), Iss. 2 P.701

    https://doi.org/10.1051/m2an/2018070 [Citations: 1]
  59. A Well-Balanced Asymptotic Preserving Scheme for the Two-Dimensional Rotating Shallow Water Equations with Nonflat Bottom Topography

    Kurganov, Alexander | Liu, Yongle | Lukáčová-Medviďová, Mária

    SIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 3 P.A1655

    https://doi.org/10.1137/21M141573X [Citations: 4]
  60. A Drift-Asymptotic scheme for a fluid description of plasmas in strong magnetic fields

    Deluzet, Fabrice | Ottaviani, Maurizio | Possanner, Stefan

    Computer Physics Communications, Vol. 219 (2017), Iss. P.164

    https://doi.org/10.1016/j.cpc.2017.05.018 [Citations: 2]
  61. A robust implicit–explicit acoustic-transport splitting scheme for two-phase flows

    Peluchon, S. | Gallice, G. | Mieussens, L.

    Journal of Computational Physics, Vol. 339 (2017), Iss. P.328

    https://doi.org/10.1016/j.jcp.2017.03.019 [Citations: 10]
  62. An All-Regime Lagrange-Projection Like Scheme for the Gas Dynamics Equations on Unstructured Meshes

    Chalons, Christophe | Girardin, Mathieu | Kokh, Samuel

    Communications in Computational Physics, Vol. 20 (2016), Iss. 1 P.188

    https://doi.org/10.4208/cicp.260614.061115a [Citations: 49]
  63. Flux Splitting for Stiff Equations: A Notion on Stability

    Schütz, Jochen | Noelle, Sebastian

    Journal of Scientific Computing, Vol. 64 (2015), Iss. 2 P.522

    https://doi.org/10.1007/s10915-014-9942-x [Citations: 12]
  64. A low-diffusion self-adaptive flux-vector splitting approach for compressible flows

    Iampietro, D. | Daude, F. | Galon, P.

    Computers & Fluids, Vol. 206 (2020), Iss. P.104586

    https://doi.org/10.1016/j.compfluid.2020.104586 [Citations: 4]
  65. High Order Semi-implicit WENO Schemes for All-Mach Full Euler System of Gas Dynamics

    Boscarino, Sebastiano | Qiu, Jingmei | Russo, Giovanni | Xiong, Tao

    SIAM Journal on Scientific Computing, Vol. 44 (2022), Iss. 2 P.B368

    https://doi.org/10.1137/21M1424433 [Citations: 17]
  66. An asymptotic preserving scheme for the two-dimensional shallow water equations with Coriolis forces

    Liu, Xin | Chertock, Alina | Kurganov, Alexander

    Journal of Computational Physics, Vol. 391 (2019), Iss. P.259

    https://doi.org/10.1016/j.jcp.2019.04.035 [Citations: 15]
  67. All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics

    Boscarino, S. | Russo, G. | Scandurra, L.

    Journal of Scientific Computing, Vol. 77 (2018), Iss. 2 P.850

    https://doi.org/10.1007/s10915-018-0731-9 [Citations: 56]
  68. High Order Asymptotic Preserving and Classical Semi-implicit RK Schemes for the Euler–Poisson System in the Quasineutral Limit

    Arun, K. R. | Crouseilles, N. | Samantaray, S.

    Journal of Scientific Computing, Vol. 100 (2024), Iss. 1

    https://doi.org/10.1007/s10915-024-02577-3 [Citations: 0]
  69. An all-regime Lagrange-Projection like scheme for 2D homogeneous models for two-phase flows on unstructured meshes

    Chalons, Christophe | Girardin, Mathieu | Kokh, Samuel

    Journal of Computational Physics, Vol. 335 (2017), Iss. P.885

    https://doi.org/10.1016/j.jcp.2017.01.017 [Citations: 27]
  70. A comparative study of numerical methods for approximating the solutions of a macroscopic automated-vehicle traffic flow model

    Titakis, George | Karafyllis, Iasson | Theodosis, Dionysios | Papamichail, Ioannis | Papageorgiou, Markos

    Computers & Mathematics with Applications, Vol. 176 (2024), Iss. P.469

    https://doi.org/10.1016/j.camwa.2024.11.007 [Citations: 0]
  71. Existence of global entropy solutions to the isentropic Euler equations with geometric effects

    Lu, Yun-guang | Gu, Feng

    Nonlinear Analysis: Real World Applications, Vol. 14 (2013), Iss. 2 P.990

    https://doi.org/10.1016/j.nonrwa.2012.08.012 [Citations: 7]
  72. Numerical Approximation of Hyperbolic Systems of Conservation Laws

    The Case of Multidimensional Systems

    Godlewski, Edwige | Raviart, Pierre-Arnaud

    2021

    https://doi.org/10.1007/978-1-0716-1344-3_5 [Citations: 0]
  73. A Mach-sensitive splitting approach for Euler-like systems

    Iampietro, D. | Daude, F. | Galon, P. | Hérard, J.-M.

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 52 (2018), Iss. 1 P.207

    https://doi.org/10.1051/m2an/2017063 [Citations: 9]
  74. A Numerical Scheme for the Compressible Low-Mach Number Regime of Ideal Fluid Dynamics

    Barsukow, Wasilij | Edelmann, Philipp V. F. | Klingenberg, Christian | Miczek, Fabian | Röpke, Friedrich K.

    Journal of Scientific Computing, Vol. 72 (2017), Iss. 2 P.623

    https://doi.org/10.1007/s10915-017-0372-4 [Citations: 26]
  75. High order well-balanced asymptotic preserving IMEX RKDG schemes for the two-dimensional nonlinear shallow water equations

    Xie, Xian | Dong, Haiyun | Li, Maojun

    Journal of Computational Physics, Vol. 510 (2024), Iss. P.113092

    https://doi.org/10.1016/j.jcp.2024.113092 [Citations: 0]
  76. A Mach-sensitive implicit–explicit scheme adapted to compressible multi-scale flows

    Iampietro, D. | Daude, F. | Galon, P. | Hérard, J.-M.

    Journal of Computational and Applied Mathematics, Vol. 340 (2018), Iss. P.122

    https://doi.org/10.1016/j.cam.2018.02.019 [Citations: 10]
  77. High order semi-implicit weighted compact nonlinear scheme for the full compressible Euler system at all Mach numbers

    Jiang, Yan-Qun | Zhou, Shu-Guang | Hu, Ying-Gang | Zhang, Xu

    Computers & Mathematics with Applications, Vol. 109 (2022), Iss. P.125

    https://doi.org/10.1016/j.camwa.2022.01.020 [Citations: 2]
  78. Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation

    Bispen, Georgij | Lukáčová-Medvid'ová, Mária | Yelash, Leonid

    Journal of Computational Physics, Vol. 335 (2017), Iss. P.222

    https://doi.org/10.1016/j.jcp.2017.01.020 [Citations: 51]
  79. Compressible solver for two-phase flows with sharp interface and capillary effects preserving accuracy in the low Mach regime

    Zou, Ziqiang | Grenier, Nicolas | Kokh, Samuel | Tenaud, Christian | Audit, Edouard

    Journal of Computational Physics, Vol. 448 (2022), Iss. P.110735

    https://doi.org/10.1016/j.jcp.2021.110735 [Citations: 1]
  80. High Order Structure-Preserving Finite Difference WENO Schemes for MHD Equations with Gravitation in all Sonic Mach Numbers

    Chen, Wei | Wu, Kailiang | Xiong, Tao

    Journal of Scientific Computing, Vol. 99 (2024), Iss. 2

    https://doi.org/10.1007/s10915-024-02492-7 [Citations: 0]
  81. A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics

    Noelle, S. | Bispen, G. | Arun, K. R. | Lukáčová-Medviďová, M. | Munz, C.-D.

    SIAM Journal on Scientific Computing, Vol. 36 (2014), Iss. 6 P.B989

    https://doi.org/10.1137/120895627 [Citations: 63]
  82. An Asymptotic-Preserving all-speed scheme for the Euler and Navier–Stokes equations

    Cordier, Floraine | Degond, Pierre | Kumbaro, Anela

    Journal of Computational Physics, Vol. 231 (2012), Iss. 17 P.5685

    https://doi.org/10.1016/j.jcp.2012.04.025 [Citations: 116]
  83. An asymptotic preserving scheme on staggered grids for the barotropic Euler system in low Mach regimes

    Goudon, Thierry | Llobell, Julie | Minjeaud, Sebastian

    Numerical Methods for Partial Differential Equations, Vol. 36 (2020), Iss. 5 P.1098

    https://doi.org/10.1002/num.22466 [Citations: 5]
  84. Asymptotic Preserving Error Estimates for Numerical Solutions of Compressible Navier--Stokes Equations in the Low Mach Number Regime

    Feireisl, Eduard | Lukáčová-Medviďová, Mária | Nečasová, Šárka | Novotný, Antonín | She, Bangwei

    Multiscale Modeling & Simulation, Vol. 16 (2018), Iss. 1 P.150

    https://doi.org/10.1137/16M1094233 [Citations: 17]
  85. Study of a New Asymptotic Preserving Scheme for the Euler System in the Low Mach Number Limit

    Dimarco, Giacomo | Loubère, Raphaël | Vignal, Marie-Hélène

    SIAM Journal on Scientific Computing, Vol. 39 (2017), Iss. 5 P.A2099

    https://doi.org/10.1137/16M1069274 [Citations: 43]
  86. A high order semi-implicit IMEX WENO scheme for the all-Mach isentropic Euler system

    Boscarino, Sebastiano | Qiu, Jing-Mei | Russo, Giovanni | Xiong, Tao

    Journal of Computational Physics, Vol. 392 (2019), Iss. P.594

    https://doi.org/10.1016/j.jcp.2019.04.057 [Citations: 34]